A new regularity property of the Haar null ideal

Zoltán Vidnyánszky

California Institute of Technology

January 11, 2021

Let (G, \cdot) be a Polish group.

Let (G, \cdot) be a Polish group.

There exists a Haar-measure on G if and only if G is locally compact.

Let (G, \cdot) be a Polish group.

There exists a Haar-measure on G if and only if G is locally compact.

(⇒) Assume the contrary, pick K cpct with $\mu(K) > 0$.

Let (G, \cdot) be a Polish group.

There exists a Haar-measure on G if and only if G is locally compact.

(⇒) Assume the contrary, pick K cpct with $\mu(K) > 0$. Let $(g_iK)_{i \in I}$ be a maximal family of pairwise disjoint translates of K.

Let (G, \cdot) be a Polish group.

There exists a Haar-measure on G if and only if G is locally compact.

(⇒) Assume the contrary, pick K cpct with $\mu(K) > 0$. Let $(g_iK)_{i \in I}$ be a maximal family of pairwise disjoint translates of K. Then I is uncountable.

Let (G, \cdot) be a Polish group.

There exists a Haar-measure on G if and only if G is locally compact.

Let (G, \cdot) be a Polish group.

There exists a Haar-measure on G if and only if G is locally compact.

1 Automatic continuity: assume that $\pi: G \to H$ is a universally measurable group homomorphism. Is π necessarily continuous?

Let (G, \cdot) be a Polish group.

There exists a Haar-measure on G if and only if G is locally compact.

- **1** Automatic continuity: assume that $\pi: G \to H$ is a universally measurable group homomorphism. Is π necessarily continuous?
- 2 Counterpart of category.

Let (G, \cdot) be a Polish group.

There exists a Haar-measure on G if and only if G is locally compact.

- **1** Automatic continuity: assume that $\pi: G \to H$ is a universally measurable group homomorphism. Is π necessarily continuous?
- 2 Counterpart of category.
- **3** Rademacher's theorem: every $f: \mathbb{R}^n \to \mathbb{R}$ Lipschitz functions is almost everywhere differentiable.

Definition (Christensen)

Let (G, \cdot) be a Polish group. A universally measurable set $S \subset G$ is Haar null, if there exists a Borel probability measure μ on G such that for each $g, h \in G$ we have $\mu(gSh) = 0$.

Definition (Christensen)

Let (G, \cdot) be a Polish group. A universally measurable set $S \subset G$ is Haar null, if there exists a Borel probability measure μ on G such that for each $g,h \in G$ we have $\mu(gSh)=0$.

1 Haar null sets form a σ -ideal.

Definition (Christensen)

Let (G,\cdot) be a Polish group. A universally measurable set $S\subset G$ is Haar null, if there exists a Borel probability measure μ on G such that for each $g,h\in G$ we have $\mu(gSh)=0$.

- **1** Haar null sets form a σ -ideal.
- **2** This is a generalization of the Haar null ideal.

Definition (Christensen)

Let (G, \cdot) be a Polish group. A universally measurable set $S \subset G$ is Haar null, if there exists a Borel probability measure μ on G such that for each $g,h \in G$ we have $\mu(gSh)=0$.

- **1** Haar null sets form a σ -ideal.
- **2** This is a generalization of the Haar null ideal.
- 3 The Haar null ideal is translation invariant.

Definition (Christensen)

Let (G, \cdot) be a Polish group. A universally measurable set $S \subset G$ is Haar null, if there exists a Borel probability measure μ on G such that for each $g,h \in G$ we have $\mu(gSh)=0$.

- **1** Haar null sets form a σ -ideal.
- 2 This is a generalization of the Haar null ideal.
- 3 The Haar null ideal is translation invariant.

E.g.: In $(\mathbb{Z}^{\omega}, +)$ the set $(2\mathbb{Z})^{\omega}$ is Haar null.

Definition (Christensen)

Let (G, \cdot) be a Polish group. A universally measurable set $S \subset G$ is Haar null, if there exists a Borel probability measure μ on G such that for each $g,h \in G$ we have $\mu(gSh)=0$.

- **1** Haar null sets form a σ -ideal.
- 2 This is a generalization of the Haar null ideal.
- The Haar null ideal is translation invariant.

E.g.: In $(\mathbb{Z}^{\omega},+)$ the set $(2\mathbb{Z})^{\omega}$ is Haar null.

In contrast, the set \mathbb{N}^{ω} is not Haar null.

1 Automatic continuity: assume that $\pi: G \to H$ is a universally measurable group homomorphism. Is π necessarily continuous?

1 Automatic continuity: assume that $\pi: G \to H$ is a universally measurable group homomorphism. Is π necessarily continuous?

(Christensen) Yes, if H admits a compatible 2-sided invariant metric.

- **1** Automatic continuity: assume that $\pi:G\to H$ is a universally measurable group homomorphism. Is π necessarily continuous? (Christensen) Yes, if H admits a compatible 2-sided invariant metric.
- 2 Counterpart of category.

- I Automatic continuity: assume that $\pi:G\to H$ is a universally measurable group homomorphism. Is π necessarily continuous? (Christensen) Yes, if H admits a compatible 2-sided invariant metric.
- 2 Counterpart of category. (Dougherty-Mycielski) Description of the random element of S_{∞} .

- **1** Automatic continuity: assume that $\pi:G\to H$ is a universally measurable group homomorphism. Is π necessarily continuous? (Christensen) Yes, if H admits a compatible 2-sided invariant metric.
- 2 Counterpart of category. (Dougherty-Mycielski) Description of the random element of S_{∞} .
- **3** Rademacher's theorem: every $f: \mathbb{R}^n \to \mathbb{R}$ Lipschitz functions is almost everywhere differentiable.

- Automatic continuity: assume that π : G → H is a universally measurable group homomorphism. Is π necessarily continuous?
 (Christensen) Yes, if H admits a compatible two sided invariant metric.
- 2 Counterpart of category. (Dougherty-Mycielski) Description of the random element of S_{∞} .
- 3 (Christensen) If X is a separable Banach space, every $f:X\to\mathbb{R}$ Lipschitz functions is almost everywhere Gateaux differentiable.

Theorem (Solecki)

The Haar null ideal has the countable chain condition if and only if G is locally compact.

Theorem (Solecki)

The Haar null ideal has the countable chain condition if and only if G is locally compact.

If (G, \cdot) is a non-locally compact Abelian Polish group then the family of closed Haar null subsets of G is neither analytic nor co-analytic.

Theorem (Solecki)

The Haar null ideal has the countable chain condition if and only if G is locally compact.

If (G, \cdot) is a non-locally compact Abelian Polish group then the family of closed Haar null subsets of G is neither analytic nor co-analytic.

Every analytic Haar null set is contained in a Borel Haar null set.

Theorem (Solecki)

The Haar null ideal has the countable chain condition if and only if G is locally compact.

If (G, \cdot) is a non-locally compact Abelian Polish group then the family of closed Haar null subsets of G is neither analytic nor co-analytic.

Every analytic Haar null set is contained in a Borel Haar null set.

Theorem (Elekes-V)

There exists a Haar null Borel set in \mathbb{Z}^{ω} , which is not contained in a Haar null G_{δ} set.

Theorem (Solecki)

The Haar null ideal has the countable chain condition if and only if G is locally compact.

If (G, \cdot) is a non-locally compact Abelian Polish group then the family of closed Haar null subsets of G is neither analytic nor co-analytic.

Every analytic Haar null set is contained in a Borel Haar null set.

Theorem (Elekes-V)

There exists a Haar null Borel set in \mathbb{Z}^{ω} , which is not contained in a Haar null G_{δ} set.

There exists a Haar null co-analytic set in \mathbb{Z}^{ω} , which is not contained in a Haar null Borel set.

The main theorem

Theorem (Elekes-Poor-V)

Assume that $A \subset \mathbb{Z}^{\omega}$ is a Haar positive analytic set. Then A contains a Haar positive closed set.

The main theorem

Theorem (Elekes-Poor-V)

Assume that $A \subset \mathbb{Z}^{\omega}$ is a Haar positive analytic set. Then A contains a Haar positive closed set.

Let $b \in \omega^{\omega}$. Let μ_b be the uniform measure on the set $\prod_i \{0, \dots, b(i)\} \subset \mathbb{Z}^{\omega}$.

The main theorem

Theorem (Elekes-Poor-V)

Assume that $A \subset \mathbb{Z}^{\omega}$ is a Haar positive analytic set. Then A contains a Haar positive closed set.

Let $b \in \omega^{\omega}$. Let μ_b be the uniform measure on the set $\prod_i \{0, \dots, b(i)\} \subset \mathbb{Z}^{\omega}$.

Lemma (Solecki, D. Nagy)

Let S be a Haar null set in \mathbb{Z}^{ω} . There exists a $b \in \omega^{\omega}$ such that μ_b is a witness measure to $S \in \mathcal{HN}$.

For $b, b' \in \omega^{\omega}$ we say $b \leq^* b'$ if the set $\{n : b(n) \leq b'(n)\}$ co-finite. A set $D \subset \omega^{\omega}$ is called *dominating* if for every $b \in \omega^{\omega}$ there exists a $d \in D$ with $b <^* d$.

For $b, b' \in \omega^{\omega}$ we say $b \leq^* b'$ if the set $\{n : b(n) \leq b'(n)\}$ co-finite. A set $D \subset \omega^{\omega}$ is called *dominating* if for every $b \in \omega^{\omega}$ there exists a $d \in D$ with $b \leq^* d$.

Lemma

A set $S \subset \mathbb{Z}^{\omega}$ is Haar positive if and only if the set $\{b: \exists g \in \mathbb{Z}^{\omega} \ \mu_b(S+g) > 0\}$ is dominating.

Theorem (Brendle-Hjorth-Spinas)

A dominating analytic set contains a dominating closed set.

Theorem (Brendle-Hjorth-Spinas)

A dominating analytic set contains a dominating closed set. A Borel function $D \to \omega^{\omega}$, where D is dominating and Borel, is continuous on a dominating closed set.

Coding trick

Let \mathcal{I} -be an ideal on ω^{ω} , and assume that $A \subset \omega^{\omega}$ is analytic set $\not\in \mathcal{I}$.

Suppose that $F\subset\omega^\omega$ is closed. Enough to construct $\phi:F\to A$ such that

- lacktriangledown ϕ is continuous
- $\phi(F) \notin \mathcal{I}$
- $\forall x \in F \ (\phi(x) \ge^* x)$

Since then $\phi(F)$ is closed subset of A, with $\phi(F) \notin \mathcal{I}$.

Coding trick (General version)

Complexity

Brendle-Hjorth-Spinas: the family $\{F \subset \mathcal{F}(\omega^{\omega}) : F \text{ is closed and dominating} \}$ is Δ_2^1 .

Complexity

Brendle-Hjorth-Spinas: the family

 $\{F\subset \mathcal{F}(\omega^\omega): F \text{ is closed and dominating}\}$ is Δ^1_2 .

Corollary

 $\{F \subset \mathcal{F}(\mathbb{Z}^{\omega}) : F \text{ is closed and Haar null}\} \text{ is } \Delta^1_2, \text{ but not } \Sigma^1_1 \cup \Pi^1_1.$

Game quantifier

Assume that $A \subset X \times \omega^{\omega}$, where X is Polish. Let

 $\partial A = \{x : I \text{ has a winning strategy in the game } G(A_x)\}.$

If Γ is a class of sets, $\partial\Gamma=\{\partial A:A\subset X\times\omega^\omega,A\in\Gamma\}.$

Game quantifier

Assume that $A \subset X \times \omega^{\omega}$, where X is Polish. Let

 $\partial A = \{x : I \text{ has a winning strategy in the game } G(A_x)\}.$

If Γ is a class of sets, $\partial\Gamma = \{\partial A : A \subset X \times \omega^{\omega}, A \in \Gamma\}.$

Theorem (Saint Raymond)

The set $\{F \subset \mathcal{F}(\omega^{\omega}) : F \text{ is closed and non-dominating} \}$ is $\Im \Sigma_2^0$ -complete.

Game quantifier

Assume that $A \subset X \times \omega^{\omega}$, where X is Polish. Let

 $\partial A = \{x : I \text{ has a winning strategy in the game } G(A_x)\}.$

If Γ is a class of sets, $\partial\Gamma = \{\partial A : A \subset X \times \omega^{\omega}, A \in \Gamma\}.$

Theorem (Saint Raymond)

The set $\{F \subset \mathcal{F}(\omega^{\omega}) : F \text{ is closed and non-dominating}\}$ is $\Im \Sigma_2^0$ -complete.

Corollary

The set $\{F \subset \mathcal{F}(\mathbb{Z}^{\omega}) : F \text{ is closed and Haar null}\}\$ is $\partial \Sigma_2^0$ -complete.

Open questions

■ Does the main result hold for every Polish group *G*? What about products of countable groups?

Open questions

- **1** Does the main result hold for every Polish group *G*? What about products of countable groups?
- 2 Is the poset of Haar positive Borel sets ordered under inclusion proper?

Open questions

- **1** Does the main result hold for every Polish group *G*? What about products of countable groups?
- Is the poset of Haar positive Borel sets ordered under inclusion proper?
- Is there a Haar null F_{σ} set that is not contained in a Haar null G_{δ} set?

