Schreier decorations of unimodular random graphs

László Márton Tóth

École Polytechnique Fédérale de Lausanne

14th June, 2021

 $\Gamma = \langle S \rangle$ finitely generated group, X set, $\Gamma \curvearrowright X$.

 $\Gamma = \langle S \rangle$ finitely generated group, X set, $\Gamma \curvearrowright X$.

Vertices: $x \in X$. Edges: $x \in S$.

 $\Gamma = \langle S \rangle$ finitely generated group, X set, $\Gamma \curvearrowright X$.

Vertices: $x \in X$. Edges: S.XNotation: $Sch(\Gamma, S, X)$. Oriented, labeled graph.

 $\Gamma = \langle S \rangle$ finitely generated group, X set, $\Gamma \curvearrowright X$.

Vertices: $x \in X$. Edges: $x \in X$

Notation: $Sch(\Gamma, S, X)$. Oriented, labeled graph.

connected Schreier graphs of Γ \updownarrow

transitive actions of Γ

 $\Gamma = \langle S \rangle$ finitely generated group, X set, $\Gamma \curvearrowright X$.

Vertices: $x \in X$. Edges: $x \in X$

Notation: $Sch(\Gamma, S, X)$. Oriented, labeled graph.

connected rooted Schreier graphs of Γ \updownarrow transitive pointed actions of Γ \updownarrow

subgroups of Γ

 $\Gamma = \langle S \rangle$ finitely generated group, X set, $\Gamma \curvearrowright X$.

Vertices: $x \in X$. Edges: $\overset{S}{\longleftarrow} \overset{S.X}{\longleftarrow}$ Notation: $Sch(\Gamma, S, X)$. Oriented, labeled graph.

connected rooted Schreier graphs of Γ \updownarrow transitive pointed actions of Γ \updownarrow subgroups of Γ

Folklore combinatorics: every 2d-regular finite graph is a Schreier graph of the free group F_d .

 $\Gamma = \langle S \rangle$ finitely generated group, X set, $\Gamma \curvearrowright X$.

Vertices: $x \in X$. Edges: $\overset{S}{\bullet}$ S.X Notation: $Sch(\Gamma, S, X)$. Oriented, labeled graph.

connected rooted Schreier graphs of Γ

transitive pointed actions of Γ

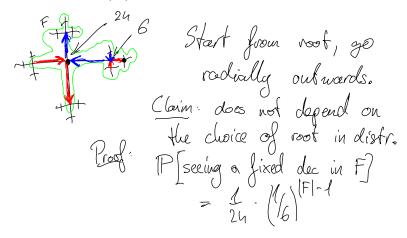
subgroups of Γ

Folklore combinatorics: every 2d-regular finite graph is a Schreier graph of the free group F_d .

l.e. the edges have an orientation and d-coloring such that at each vertex there is exactly one incoming and outgoing edge of each color. (We call this a Schreier decoration.)

An invariant random Schreier decoration

Task: Find an $Aut(T_4)$ -invariant random Schreier decoration of T_4 .



Theorem (T., 2019)

Every 2d-regular unimodular random rooted graph has an invariant random Schreier decoration.

Theorem (T., 2019)

Every 2d-regular unimodular random rooted graph has an invariant random Schreier decoration.

Theorem (T., 2019)

Every 2d-regular unimodular random rooted graph has an invariant random Schreier decoration.

Remarks:

• Easy for sofic random rooted graphs; Nontrivial for unimodular.

Theorem (T., 2019)

Every 2d-regular unimodular random rooted graph has an invariant random Schreier decoration.

- Easy for sofic random rooted graphs; Nontrivial for unimodular.
- Finding a fixed Schreier decoration of a fixed connected (countably) infinite graph is easy, but this is not that.

Theorem (T., 2019)

Every 2d-regular unimodular random rooted graph has an invariant random Schreier decoration.

- Easy for sofic random rooted graphs; Nontrivial for unimodular.
- Finding a fixed Schreier decoration of a fixed connected (countably) infinite graph is easy, but this is not that.
- Theorem uses added (global) randomness; it has to, because of a basic example of Laczkovich.

Theorem (T., 2019)

Every 2d-regular unimodular random rooted graph has an invariant random Schreier decoration.

- Easy for sofic random rooted graphs; Nontrivial for unimodular.
- Finding a fixed Schreier decoration of a fixed connected (countably) infinite graph is easy, but this is not that.
- Theorem uses added (global) randomness; it has to, because of a basic example of Laczkovich.
- Invariant random rooted Schreier graph = coset Schreier graph of an IRS.

Theorem (T., 2019)

Every 2d-regular unimodular random rooted graph has an invariant random Schreier decoration.

- Easy for sofic random rooted graphs; Nontrivial for unimodular.
- Finding a fixed Schreier decoration of a fixed connected (countably) infinite graph is easy, but this is not that.
- Theorem uses added (global) randomness; it has to, because of a basic example of Laczkovich.
- Invariant random rooted Schreier graph = coset Schreier graph of an IRS.
- Grebik has a quasi-p.m.p. version now.

Definition (graphing)

Let (X, μ) be a standard Borel probability space. A graphing is a locally finite graph $\mathcal G$ on $V(\mathcal G)=X$ with Borel edge set $E(\mathcal G)\subset X\times X$ satisfying

$$\int_A \deg_B(x) \ d\mu(x) = \int_B \deg_A(x) \ d\mu(x)$$

for all measurable sets $A, B \subseteq X$, where $\deg_S(x)$ is the number of edges from $x \in X$ to $S \subseteq X$.

Definition (graphing)

Let (X, μ) be a standard Borel probability space. A graphing is a locally finite graph $\mathcal G$ on $V(\mathcal G)=X$ with Borel edge set $E(\mathcal G)\subset X\times X$ satisfying

$$\int_{A} \deg_{B}(x) \ d\mu(x) = \int_{B} \deg_{A}(x) \ d\mu(x)$$

for all measurable sets $A, B \subseteq X$, where $\deg_S(x)$ is the number of edges from $x \in X$ to $S \subseteq X$.

Equivalently: the equivalence relation $R_{\mathcal{G}}$ generated by $E(\mathcal{G})$ preserves the measure μ .

Definition (graphing)

Let (X, μ) be a standard Borel probability space. A graphing is a locally finite graph $\mathcal G$ on $V(\mathcal G)=X$ with Borel edge set $E(\mathcal G)\subset X\times X$ satisfying

$$\int_{A} \deg_{B}(x) \ d\mu(x) = \int_{B} \deg_{A}(x) \ d\mu(x)$$

for all measurable sets $A, B \subseteq X$, where $\deg_{S}(x)$ is the number of edges from $x \in X$ to $S \subseteq X$.

Equivalently: the equivalence relation $R_{\mathcal{G}}$ generated by $E(\mathcal{G})$ preserves the measure μ .

Example: Schreier graphing, built from $\Gamma \curvearrowright (X, \mu)$ p.m.p.

Definition (graphing)

Let (X, μ) be a standard Borel probability space. A graphing is a locally finite graph $\mathcal G$ on $V(\mathcal G)=X$ with Borel edge set $E(\mathcal G)\subset X\times X$ satisfying

$$\int_{A} \deg_{B}(x) \ d\mu(x) = \int_{B} \deg_{A}(x) \ d\mu(x)$$

for all measurable sets $A, B \subseteq X$, where $\deg_{S}(x)$ is the number of edges from $x \in X$ to $S \subseteq X$.

Equivalently: the equivalence relation $R_{\mathcal{G}}$ generated by $E(\mathcal{G})$ preserves the measure μ .

Example: Schreier graphing, built from $\Gamma \curvearrowright (X, \mu)$ p.m.p.

Our graphs/graphings have bounded degree: max degree denoted D.

Definition (graphing)

Let (X, μ) be a standard Borel probability space. A graphing is a locally finite graph $\mathcal G$ on $V(\mathcal G)=X$ with Borel edge set $E(\mathcal G)\subset X\times X$ satisfying

$$\int_{A} \deg_{B}(x) \ d\mu(x) = \int_{B} \deg_{A}(x) \ d\mu(x)$$

for all measurable sets $A, B \subseteq X$, where $\deg_S(x)$ is the number of edges from $x \in X$ to $S \subseteq X$.

Equivalently: the equivalence relation $R_{\mathcal{G}}$ generated by $E(\mathcal{G})$ preserves the measure μ .

Example: Schreier graphing, built from $\Gamma \curvearrowright (X, \mu)$ p.m.p.

Our graphs/graphings have bounded degree: max degree denoted D.

Unimodular random rooted graph = random connected component of a graphing.

Definition (graphing)

Let (X, μ) be a standard Borel probability space. A graphing is a locally finite graph $\mathcal G$ on $V(\mathcal G)=X$ with Borel edge set $E(\mathcal G)\subset X\times X$ satisfying

$$\int_{A} \deg_{B}(x) \ d\mu(x) = \int_{B} \deg_{A}(x) \ d\mu(x)$$

for all measurable sets $A, B \subseteq X$, where $\deg_S(x)$ is the number of edges from $x \in X$ to $S \subseteq X$.

Equivalently: the equivalence relation $R_{\mathcal{G}}$ generated by $E(\mathcal{G})$ preserves the measure μ .

Example: Schreier graphing, built from $\Gamma \curvearrowright (X, \mu)$ p.m.p.

Our graphs/graphings have bounded degree: max degree denoted D.

Unimodular random rooted graph = random connected component of a graphing. Notation (G, o) as random variable, $\nu \in P(\mathfrak{G}^D_{\bullet})$ as measure.

Definition (graphing)

Let (X, μ) be a standard Borel probability space. A graphing is a locally finite graph $\mathcal G$ on $V(\mathcal G)=X$ with Borel edge set $E(\mathcal G)\subset X\times X$ satisfying

$$\int_{A} \deg_{B}(x) \ d\mu(x) = \int_{B} \deg_{A}(x) \ d\mu(x)$$

for all measurable sets $A, B \subseteq X$, where $\deg_S(x)$ is the number of edges from $x \in X$ to $S \subseteq X$.

Equivalently: the equivalence relation $R_{\mathcal{G}}$ generated by $E(\mathcal{G})$ preserves the measure μ .

Example: Schreier graphing, built from $\Gamma \curvearrowright (X, \mu)$ p.m.p.

Our graphs/graphings have bounded degree: max degree denoted D.

Unimodular random rooted graph = random connected component of a graphing. Notation (G, o) as random variable, $\nu \in P(\mathfrak{G}^D_{\bullet})$ as measure.

Intrinsic formulation of the p.m.p. condition: involution invariance, or Mass Transport Principle, or reversibility of random walk.

Boring example: s irrational rotation of the circle. \mathcal{G} : connect every point to its rotated image.

Boring example: s irrational rotation of the circle. \mathcal{G} : connect every point to its rotated image.

Every connected component is (P, o), the rooted bi-infinite path.

Boring example: s irrational rotation of the circle. \mathcal{G} : connect every point to its rotated image.

Every connected component is (P, o), the rooted bi-infinite path.

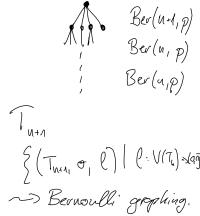
$$\nu_{\mathcal{G}} = \delta_{(P,o)}$$

Boring example: s irrational rotation of the circle. \mathcal{G} : connect every point to its rotated image.

Every connected component is (P, o), the rooted bi-infinite path.

$$\nu_{\mathcal{G}} = \delta_{(P,o)}$$

Less boring example: Galton-Watson tree.



Invariant random (rooted) Schreier graphs

Random rooted Schreier graph: $(\tilde{\mathcal{G}}, \tilde{o}, \operatorname{dec})$ random, where dec is the combinatorial data. I.e. $\tilde{\nu} \in P(\mathfrak{G}^{\operatorname{Sch}}_{\bullet})$, where $\mathfrak{G}^{\operatorname{Sch}}_{\bullet}$ is the space of rooted Schreier graphs.

Invariance: F_d acts on rooted Schreier graphs by moving the root: $s.(\tilde{G}, \tilde{o}, \text{dec}) = (\tilde{G}, s.\tilde{o}, \text{dec})$. Want $F_d \curvearrowright (\mathfrak{G}_{\bullet}^{\operatorname{Sch}}, \tilde{\nu})$ to be p.m.p.

Random rooted graphs	Measurable combinatorics
Unimodular random rooted graph $(G,o)\sim u$ where $ u\in P(\mathfrak{G}^D_ullet)$ unimod.	Graphing $\mathcal{G} = (X, E, \mu)$

Random rooted graphs	Measurable combinatorics
Unimodular random rooted graph $(G,o)\sim u$ where $ u\in P(\mathfrak{G}^D_ullet)$ unimod.	Graphing $\mathcal{G} = (X, E, \mu)$

Random rooted graphs	Measurable combinatorics
Unimodular random rooted graph $(G,o) \sim \nu$ where $\nu \in P(\mathfrak{G}^D_{ullet})$ unimod.	Graphing $G = (X, E, \mu)$
Invariant random rooted Schreier graph $(\tilde{G}, \tilde{o}, \operatorname{dec}) \sim \tilde{\nu}$, where $\tilde{\nu} \in P(\mathfrak{G}^{\operatorname{Sch}}_{ullet})$, $F_d \curvearrowright (\mathfrak{G}^{\operatorname{Sch}}_{ullet}, \tilde{\nu})$ p.m.p	Schreier graphing $\mathrm{Sch}(F_d,S,X)$, where $F_d \curvearrowright (X,\mu)$ p.m.p

Random rooted graphs	Measurable combinatorics
Unimodular random rooted graph $(G,o) \sim \nu$ where $\nu \in P(\mathfrak{G}^D_{ullet})$ unimod.	Graphing $\mathcal{G} = (X, E, \mu)$
Invariant random rooted Schreier graph $(\tilde{\mathcal{G}}, \tilde{o}, \operatorname{dec}) \sim \tilde{\nu}$, where $\tilde{\nu} \in P(\mathfrak{G}^{\operatorname{Sch}}_{ullet})$, $F_d \curvearrowright (\mathfrak{G}^{\operatorname{Sch}}_{ullet}, \tilde{\nu})$ p.m.p	Schreier graphing $\mathrm{Sch}(F_d,S,X)$, where $F_d \curvearrowright (X,\mu)$ p.m.p
Thm: if (G, o) is $2d$ -reg a.s., then $\exists (\tilde{G}, \tilde{o}, \text{dec}) \text{ s.t. } (G, o) \sim (\tilde{G}, \tilde{o}).$	

Random rooted graphs	Measurable combinatorics
Unimodular random rooted graph $(G,o)\sim u$ where $ u\in P(\mathfrak{G}^D_ullet)$ unimod.	Graphing $\mathcal{G} = (X, E, \mu)$
Invariant random rooted Schreier graph $(\tilde{G}, \tilde{o}, \operatorname{dec}) \sim \tilde{\nu}$, where $\tilde{\nu} \in P(\mathfrak{G}^{\operatorname{Sch}}_{ullet})$, $F_d \curvearrowright (\mathfrak{G}^{\operatorname{Sch}}_{ullet}, \tilde{\nu})$ p.m.p	Schreier graphing $Sch(F_d, S, X)$, where $F_d \curvearrowright (X, \mu)$ p.m.p
Thm: if (G, o) is $2d$ -reg a.s., then $\exists (\tilde{G}, \tilde{o}, \text{dec}) \text{ s.t. } (G, o) \sim (\tilde{G}, \tilde{o}).$	
$\begin{array}{l} \Phi: \mathfrak{G}^{\mathrm{Sch}}_{\bullet} \to \mathfrak{G}^{D}_{\bullet} \text{ forgets the decoration,} \\ Thm: \ \forall \nu \ 2d\text{-reg,} \ \exists \tilde{\nu} \ \mathrm{s.t.} \ \Phi_{*}\tilde{\nu} = \nu \end{array}$	

Random rooted graphs	Measurable combinatorics
Unimodular random rooted graph $(G,o)\sim u$ where $ u\in P(\mathfrak{G}^D_ullet)$ unimod.	Graphing $G = (X, E, \mu)$
Invariant random rooted Schreier graph $(\tilde{G}, \tilde{o}, \operatorname{dec}) \sim \tilde{\nu}$, where $\tilde{\nu} \in P(\mathfrak{G}^{\operatorname{Sch}}_{ullet})$, $F_d \curvearrowright (\mathfrak{G}^{\operatorname{Sch}}_{ullet}, \tilde{\nu})$ p.m.p	Schreier graphing $\mathrm{Sch}(F_d,S,X)$, where $F_d \curvearrowright (X,\mu)$ p.m.p
Thm: if (G, o) is $2d$ -reg a.s., then $\exists (\tilde{G}, \tilde{o}, \text{dec}) \text{ s.t. } (G, o) \sim (\tilde{G}, \tilde{o}).$	NOT Thm: Every $2d$ -reg graphing \mathcal{G} is a Schreier graphing of F_d .
$\Phi: \mathfrak{G}^{\operatorname{Sch}}_{ullet} o \mathfrak{G}^{\mathcal{D}}_{ullet}$ forgets the decoration, Thm: $orall u \ 2d$ -reg, $\exists \tilde{ u} \ \text{s.t.} \ \Phi_* \tilde{ u} = u$	

Random rooted graphs	Measurable combinatorics
Unimodular random rooted graph $(G,o) \sim \nu$ where $\nu \in P(\mathfrak{G}^D_{ullet})$ unimod.	Graphing $\mathcal{G} = (X, E, \mu)$
Invariant random rooted Schreier graph $(\tilde{\mathcal{G}}, \tilde{o}, \operatorname{dec}) \sim \tilde{\nu}$, where $\tilde{\nu} \in P(\mathfrak{G}^{\operatorname{Sch}}_{ullet})$, $F_d \curvearrowright (\mathfrak{G}^{\operatorname{Sch}}_{ullet}, \tilde{\nu})$ p.m.p	Schreier graphing $Sch(F_d, S, X)$, where $F_d \curvearrowright (X, \mu)$ p.m.p
Thm: if (G, o) is $2d$ -reg a.s., then $\exists (\tilde{G}, \tilde{o}, \operatorname{dec}) \text{ s.t. } (G, o) \sim (\tilde{G}, \tilde{o}).$	NOT Thm : Every $2d$ -reg graphing \mathcal{G} is a Schreier graphing of F_d .

 $\Phi: \mathfrak{G}^{\operatorname{Sch}}_{ullet} \to \mathfrak{G}^D_{ullet}$ forgets the decoration,

Thm: $\forall \nu \ 2d$ -reg, $\exists \tilde{\nu} \ \text{s.t.} \ \Phi_* \tilde{\nu} = \nu$

IS Thm: Every 2d-reg \mathcal{G} is a *local*

isomorphic image of some \mathcal{G}' that is a Schreier graphing of F_d .

Back to the example

M the nuique Ant (T4) - inv random Sch dec. Sch(Ty)= { Sch Decorations of Ty} Question; 6 n a factor of iid? W. [0,7] V(T4) -> Sch (T4) s.t. • 4 is $Aut(\tau_n)$ - equiv. • $\tau_{\star} u^{v(\tau_n)} = \eta$ where u is unif. FIID independent subset of U(Ta) e(v) E[0,1] which is uniform random indep across V VEI iff e(u)< e(v) + u \in N(v)

d=1Invariant random language Measurable combinatorics $P: ext{ bi-infinite line}$

d=1		
Invariant random language	Measurable combinatorics	
P : bi-infinite line		
Unique $Aut(P)$ -invariant Schreier dec: $1/2 - 1/2$ this way or that way		

d = 1		
	Invariant random language	Measurable combinatorics
	P : bi-infinite line	
	Unique $\operatorname{Aut}(P)$ -invariant Schreier dec: $1/2$ - $1/2$ this way or that way	
	Not a factor of iid	

d = 1		
	Invariant random language	Measurable combinatorics
	P : bi-infinite line	Bernoulli graphing ${\cal P}$
	Unique $\operatorname{Aut}(P)$ -invariant Schreier dec: $1/2$ - $1/2$ this way or that way	
	Not a factor of iid	

d = 1		
Invariant random language	Measurable combinatorics	
P : bi-infinite line	Bernoulli graphing ${\cal P}$	
Unique $\operatorname{Aut}(P)$ -invariant Schreier dec: $1/2$ - $1/2$ this way or that way		
Not a factor of iid	has no measurable Schreier decoration	

d = 1		
	Invariant random language	Measurable combinatorics
-	P : bi-infinite line	Bernoulli graphing ${\cal P}$
	Unique $Aut(P)$ -invariant Schreier dec: $1/2$ - $1/2$ this way or that way	is a 2-to-1 local isomorphic image of a \mathcal{P}' with measurable Schreier dec
	Not a factor of iid	has no measurable Schreier decoration

d = 1		
Invariant random language	Measurable combinatorics	
P : bi-infinite line	Bernoulli graphing ${\cal P}$	
Unique $Aut(P)$ -invariant Schreier dec: $1/2$ - $1/2$ this way or that way	is a 2-to-1 local isomorphic image of a \mathcal{P}' with measurable Schreier dec	
Not a factor of iid	has no measurable Schreier decoration	
Open whether it is FIID for $d > 1$.		

d=1		
Invariant random language	Measurable combinatorics	
P : bi-infinite line	Bernoulli graphing ${\cal P}$	
Unique $\operatorname{Aut}(P)$ -invariant Schreier dec: $1/2$ - $1/2$ this way or that way	is a 2-to-1 local isomorphic image of a \mathcal{P}' with measurable Schreier dec	
Not a factor of iid	has no measurable Schreier decoration	

Open whether it is FIID for d > 1.

Question: Which 2d-reg graphings have a measurable Schreier decoration?

d = 1			
Invariant random language	Measurable combinatorics		
P : bi-infinite line	Bernoulli graphing ${\cal P}$		
Unique $\operatorname{Aut}(P)$ -invariant Schreier dec: $1/2$ - $1/2$ this way or that way	is a 2-to-1 local isomorphic image of a \mathcal{P}' with measurable Schreier dec		
Not a factor of iid	has no measurable Schreier decoration		

Open whether it is FIID for d > 1.

Question: Which 2d-reg graphings have a measurable Schreier decoration?

Subquestion: What about Bernoulli graphings?

d = 1		
	Invariant random language	Measurable combinatorics
	P : bi-infinite line	Bernoulli graphing ${\cal P}$
	Unique $\operatorname{Aut}(P)$ -invariant Schreier dec: $1/2$ - $1/2$ this way or that way	is a 2-to-1 local isomorphic image of a \mathcal{P}' with measurable Schreier dec
	Not a factor of iid	has no measurable

Open whether it is FIID for d > 1.

Question: Which 2*d*-reg graphings have a measurable Schreier decoration?

Subquestion: What about Bernoulli graphings? On what fixed graphs are there FIID Schreier decorations?

Theorem (Bencs, Hrušková, T., 2021)

For any $d \ge 1$ there are 2d-reg graphs that have no factor of iid Schreier decoration.

Theorem (Bencs, Hrušková, T., 2021)

For any $d \ge 1$ there are 2d-reg graphs that have no factor of iid Schreier decoration.

Not really satisfactory, all non-examples are quasi-isometric to P.

Theorem (Bencs, Hrušková, T., 2021)

For any $d \ge 1$ there are 2d-reg graphs that have no factor of iid Schreier decoration.

Not really satisfactory, all non-examples are quasi-isometric to P.

Theorem (Bencs, Hrušková, T., 2021)

The d-dimensional Euclidean grid has a factor of iid Schreier decoration for all $d \ge 2$. Same for all Archimedean lattices of even degree in the plane.

Theorem (Bencs, Hrušková, T., 2021)

For any $d \ge 1$ there are 2d-reg graphs that have no factor of iid Schreier decoration.

Not really satisfactory, all non-examples are quasi-isometric to P.

Theorem (Bencs, Hrušková, T., 2021)

The d-dimensional Euclidean grid has a factor of iid Schreier decoration for all $d \ge 2$. Same for all Archimedean lattices of even degree in the plane.

Builds on toasts, could have Borel version.

Theorem (Bencs, Hrušková, T., 2021)

Non-amenable quasi-transitive unimodular graphs (e.g. regular infinite trees) of even degree have a factor of iid balanced orientation.

Theorem (Bencs, Hrušková, T., 2021)

Non-amenable quasi-transitive unimodular graphs (e.g. regular infinite trees) of even degree have a factor of iid balanced orientation.

 Thornton: measurable balanced orientation in regular, expanding graphings;

Theorem (Bencs, Hrušková, T., 2021)

Non-amenable quasi-transitive unimodular graphs (e.g. regular infinite trees) of even degree have a factor of iid balanced orientation.

- Thornton: measurable balanced orientation in regular, expanding graphings;
- Balanced orientation is a perfect matching on an auxiliary graph;



Theorem (Bencs, Hrušková, T., 2021)

Non-amenable quasi-transitive unimodular graphs (e.g. regular infinite trees) of even degree have a factor of iid balanced orientation.

- Thornton: measurable balanced orientation in regular, expanding graphings;
- Balanced orientation is a perfect matching on an auxiliary graph;
- Lyons-Nazarov-type FIID perfect matching, need expansion.

Theorem (Bencs, Hrušková, T., 2021)

Non-amenable quasi-transitive unimodular graphs (e.g. regular infinite trees) of even degree have a factor of iid balanced orientation.

- Thornton: measurable balanced orientation in regular, expanding graphings;
- Balanced orientation is a perfect matching on an auxiliary graph;
- Lyons-Nazarov-type FIID perfect matching, need expansion.

Theorem (Bencs, Hrušková, T., 2021)

Theorem (Bencs, Hrušková, T., 2021)

Non-amenable quasi-transitive unimodular graphs (e.g. regular infinite trees) of even degree have a factor of iid balanced orientation.

- Thornton: measurable balanced orientation in regular, expanding graphings;
- Balanced orientation is a perfect matching on an auxiliary graph;
- Lyons-Nazarov-type FIID perfect matching, need expansion.

Theorem (Bencs, Hrušková, T., 2021)

The Bernoulli graphing of a non-amenable, unimodular quasi-transitive graph has spectral gap.

 Standard representation theoretic proof for Bernoulli shifts of non-amenable groups;

Theorem (Bencs, Hrušková, T., 2021)

Non-amenable quasi-transitive unimodular graphs (e.g. regular infinite trees) of even degree have a factor of iid balanced orientation.

- Thornton: measurable balanced orientation in regular, expanding graphings;
- Balanced orientation is a perfect matching on an auxiliary graph;
- Lyons-Nazarov-type FIID perfect matching, need expansion.

Theorem (Bencs, Hrušková, T., 2021)

- Standard representation theoretic proof for Bernoulli shifts of non-amenable groups;
- Backhausz-Szegedy-Virág for regular trees;

Theorem (Bencs, Hrušková, T., 2021)

Non-amenable quasi-transitive unimodular graphs (e.g. regular infinite trees) of even degree have a factor of iid balanced orientation.

- Thornton: measurable balanced orientation in regular, expanding graphings;
- Balanced orientation is a perfect matching on an auxiliary graph;
- Lyons-Nazarov-type FIID perfect matching, need expansion.

Theorem (Bencs, Hrušková, T., 2021)

- Standard representation theoretic proof for Bernoulli shifts of non-amenable groups;
- Backhausz-Szegedy-Virág for regular trees;
- Not a straightforward generalization to quasi-transitive;

Theorem (Bencs, Hrušková, T., 2021)

Non-amenable quasi-transitive unimodular graphs (e.g. regular infinite trees) of even degree have a factor of iid balanced orientation.

- Thornton: measurable balanced orientation in regular, expanding graphings;
- Balanced orientation is a perfect matching on an auxiliary graph;
- Lyons-Nazarov-type FIID perfect matching, need expansion.

Theorem (Bencs, Hrušková, T., 2021)

- Standard representation theoretic proof for Bernoulli shifts of non-amenable groups;
- Backhausz-Szegedy-Virág for regular trees;
- Not a straightforward generalization to quasi-transitive;
- Not true for unimodular random rooted graphs in general.

• Is the $\operatorname{Aut}(T_{2d})$ -invariant random Schreier decoration of T_{2d} a factor of iid?

- Is the $\operatorname{Aut}(T_{2d})$ -invariant random Schreier decoration of T_{2d} a factor of iid?
- Is there a transitive graph not QI to P that has no Schreier decoration as a factor of iid?

- Is the $\operatorname{Aut}(T_{2d})$ -invariant random Schreier decoration of T_{2d} a factor of iid?
- Is there a transitive graph not QI to P that has no Schreier decoration as a factor of iid?
- Is there a transitive graph that has a FIID Schreier decoration that has infinite monochromatic paths with positive probability?

- Is the $\operatorname{Aut}(T_{2d})$ -invariant random Schreier decoration of T_{2d} a factor of iid?
- Is there a transitive graph not QI to P that has no Schreier decoration as a factor of iid?
- Is there a transitive graph that has a FIID Schreier decoration that has infinite monochromatic paths with positive probability?
- Is measurably decorating the Bernoulli graphing the most difficult among graphings with the same local statistics?

THANK YOU FOR YOUR ATTENTION

For the probabilist: \mathcal{G} graphing on (X, μ) . The \mathcal{G} -connected-component of a μ -random $x \in X$, rooted at x, is a random rooted graph (G, o).

For the probabilist: \mathcal{G} graphing on (X, μ) . The \mathcal{G} -connected-component of a μ -random $x \in X$, rooted at x, is a random rooted graph (G, o). \mathcal{G} is p.m.p. $\Rightarrow (G, o)$ is unimodular.

For the probabilist: $\mathcal G$ graphing on (X,μ) . The $\mathcal G$ -connected-component of a μ -random $x\in X$, rooted at x, is a random rooted graph (G,o). $\mathcal G$ is p.m.p. $\Rightarrow (G,o)$ is unimodular. Flavour: o' random neighbor of o in G. Unimodularity: (G,o,o') and (G,o',o) are the same in distribution.

For the probabilist: \mathcal{G} graphing on (X, μ) . The \mathcal{G} -connected-component of a μ -random $x \in X$, rooted at x, is a random rooted graph (G, o). \mathcal{G} is p.m.p. $\Rightarrow (G, o)$ is unimodular. Flavour: o' random neighbor of o in G. Unimodularity: (G, o, o') and (G, o', o) are the same in distribution.

For the measure theorist: $\mathfrak{G}^{D}_{\bullet}$ is the space of rooted, connected graphs with degree bound D (up to rooted isomorphism).

For the probabilist: \mathcal{G} graphing on (X, μ) . The \mathcal{G} -connected-component of a μ -random $x \in X$, rooted at x, is a random rooted graph (G, o). \mathcal{G} is p.m.p. $\Rightarrow (G, o)$ is unimodular. Flavour: o' random neighbor of o in G. Unimodularity: (G, o, o') and (G, o', o) are the same in distribution.

For the measure theorist: $\mathfrak{G}^{D}_{\bullet}$ is the space of rooted, connected graphs with degree bound D (up to rooted isomorphism). Compact with respect to the rooted distance.

For the probabilist: \mathcal{G} graphing on (X, μ) . The \mathcal{G} -connected-component of a μ -random $x \in X$, rooted at x, is a random rooted graph (\mathcal{G}, o) .

 \mathcal{G} is p.m.p. \Rightarrow (\mathcal{G}, o) is unimodular. Flavour: o' random neighbor of o in \mathcal{G} . Unimodularity: (\mathcal{G}, o, o') and (\mathcal{G}, o', o) are the same in distribution.

For the measure theorist: $\mathfrak{G}^{\bullet}_{\bullet}$ is the space of rooted, connected graphs with degree bound D (up to rooted isomorphism). Compact with respect to the rooted distance.

For $x \in X$ let $\mathcal{G}(x)$ denote the connected component of x in \mathcal{G} . The map $\varphi : x \mapsto (\mathcal{G}(x), x)$ is measurable. We set $\nu_{\mathcal{G}} = \varphi_* \mu$. Then $\nu_{\mathcal{G}} \in P(\mathfrak{G}^D_{\bullet})$.

For the probabilist: \mathcal{G} graphing on (X, μ) . The \mathcal{G} -connected-component of a μ -random $x \in X$, rooted at x, is a random rooted graph (G, o). \mathcal{G} is p.m.p. $\Rightarrow (G, o)$ is unimodular. Flavour: o' random neighbor of o in G. Unimodularity: (G, o, o') and (G, o', o) are the same in distribution.

For the measure theorist: \mathfrak{G}^D_{\bullet} is the space of rooted, connected graphs with degree bound D (up to rooted isomorphism). Compact with respect to the rooted distance.

For $x \in X$ let $\mathcal{G}(x)$ denote the connected component of x in \mathcal{G} . The map $\varphi: x \mapsto (\mathcal{G}(x), x)$ is measurable. We set $\nu_{\mathcal{G}} = \varphi_* \mu$. Then $\nu_{\mathcal{G}} \in P(\mathfrak{G}^D_{\bullet})$. $\nu_{\mathcal{G}}$ is not just any Borel measure on \mathfrak{G}^D_{\bullet} , it satisfies a technical condition, also called involution invariance or the Mass Transport Principle, or reversibility of random walk.

For the probabilist: \mathcal{G} graphing on (X, μ) . The \mathcal{G} -connected-component of a μ -random $x \in X$, rooted at x, is a random rooted graph (G, o). \mathcal{G} is p.m.p. $\Rightarrow (G, o)$ is unimodular. Flavour: o' random neighbor of o in G. Unimodularity: (G, o, o') and (G, o', o) are the same in distribution.

For the measure theorist: $\mathfrak{G}^{0}_{\bullet}$ is the space of rooted, connected graphs with degree bound D (up to rooted isomorphism). Compact with respect to the rooted distance.

For $x \in X$ let $\mathcal{G}(x)$ denote the connected component of x in \mathcal{G} . The map $\varphi: x \mapsto (\mathcal{G}(x), x)$ is measurable. We set $\nu_{\mathcal{G}} = \varphi_* \mu$. Then $\nu_{\mathcal{G}} \in P(\mathfrak{G}^D_{\bullet})$. $\nu_{\mathcal{G}}$ is not just any Borel measure on \mathfrak{G}^D_{\bullet} , it satisfies a technical condition, also called involution invariance or the Mass Transport Principle, or reversibility of random walk. Flavour: $\mathfrak{G}^D_{\bullet\bullet}$ space of double rooted graphs.

For the probabilist: \mathcal{G} graphing on (X, μ) . The \mathcal{G} -connected-component of a μ -random $x \in X$, rooted at x, is a random rooted graph (G, o). \mathcal{G} is p.m.p. $\Rightarrow (G, o)$ is unimodular. Flavour: o' random neighbor of o in G.

For the measure theorist: \mathfrak{G}^D_ullet is the space of rooted, connected graphs with

Unimodularity: (G, o, o') and (G, o', o) are the same in distribution.

degree bound D (up to rooted isomorphism). Compact with respect to the rooted distance.

For $x \in X$ let $\mathcal{G}(x)$ denote the connected component of x in \mathcal{G} . The map $\varphi: x \mapsto (\mathcal{G}(x), x)$ is measurable. We set $\nu_{\mathcal{G}} = \varphi_* \mu$. Then $\nu_{\mathcal{G}} \in P(\mathfrak{G}^D_{\bullet})$. $\nu_{\mathcal{G}}$ is not just any Borel measure on \mathfrak{G}^D_{\bullet} , it satisfies a technical condition, also called involution invariance or the Mass Transport Principle, or reversibility of random walk. Flavour: $\mathfrak{G}^D_{\bullet \bullet}$ space of double rooted graphs. $\nu_{\mathcal{G}}$ gives rise to $\nu_{\mathcal{G}}' \in P(\mathfrak{G}^D_{\bullet \bullet})$.

For the probabilist: \mathcal{G} graphing on (X, μ) . The \mathcal{G} -connected-component of a μ -random $x \in X$, rooted at x, is a random rooted graph (G, o).

 \mathcal{G} is p.m.p. \Rightarrow (\mathcal{G}, o) is unimodular. Flavour: o' random neighbor of o in \mathcal{G} . Unimodularity: (\mathcal{G}, o, o') and (\mathcal{G}, o', o) are the same in distribution.

For the measure theorist: \mathfrak{G}^D_{\bullet} is the space of rooted, connected graphs with degree bound D (up to rooted isomorphism). Compact with respect to the rooted distance.

For $x \in X$ let $\mathcal{G}(x)$ denote the connected component of x in \mathcal{G} . The map $\varphi: x \mapsto (\mathcal{G}(x), x)$ is measurable. We set $\nu_{\mathcal{G}} = \varphi_* \mu$. Then $\nu_{\mathcal{G}} \in P(\mathfrak{G}^D_{\bullet})$. $\nu_{\mathcal{G}}$ is not just any Borel measure on \mathfrak{G}^D_{\bullet} , it satisfies a technical condition, also called involution invariance or the Mass Transport Principle, or reversibility of random walk. Flavour: $\mathfrak{G}^D_{\bullet\bullet}$ space of double rooted graphs. $\nu_{\mathcal{G}}$ gives rise to $\nu_{\mathcal{G}}' \in P(\mathfrak{G}^D_{\bullet\bullet})$. Flipping the root: $\iota: \mathfrak{G}^D_{\bullet\bullet} \to \mathfrak{G}^D_{\bullet\bullet}$.

rooted distance.

For the probabilist: \mathcal{G} graphing on (X, μ) . The \mathcal{G} -connected-component of a μ -random $x \in X$, rooted at x, is a random rooted graph (G, o). \mathcal{G} is p.m.p. $\Rightarrow (G, o)$ is unimodular. Flavour: o' random neighbor of o in G.

For the measure theorist: \mathfrak{G}^D_{\bullet} is the space of rooted, connected graphs with degree bound D (up to rooted isomorphism). Compact with respect to the

Unimodularity: (G, o, o') and (G, o', o) are the same in distribution.

For $x \in X$ let $\mathcal{G}(x)$ denote the connected component of x in \mathcal{G} . The map $\varphi: x \mapsto (\mathcal{G}(x), x)$ is measurable. We set $\nu_{\mathcal{G}} = \varphi_* \mu$. Then $\nu_{\mathcal{G}} \in P(\mathfrak{G}^D_{\bullet})$. $\nu_{\mathcal{G}}$ is not just any Borel measure on \mathfrak{G}^D_{\bullet} , it satisfies a technical condition, also called involution invariance or the Mass Transport Principle, or reversibility of random walk. Flavour: $\mathfrak{G}^D_{\bullet\bullet}$ space of double rooted graphs. $\nu_{\mathcal{G}}$ gives rise to $\nu'_{\mathcal{G}} \in P(\mathfrak{G}^D_{\bullet\bullet})$. Flipping the root: $\iota: \mathfrak{G}^D_{\bullet\bullet} \to \mathfrak{G}^D_{\bullet\bullet}$. Unimodularity: $\iota_* \nu'_{\mathcal{G}} = \nu'_{\mathcal{G}}$.