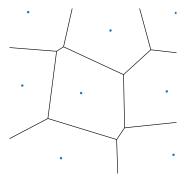
Hyperfiniteness of Borel graphs of slow intermediate growth

Andrew Marks, work in progress with Jan Grebík, Václav Rozhoň, and Forte Shinko

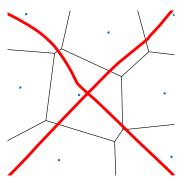
Caltech Logic Seminar, Oct 2 2024



Hyperfiniteness of Borel graphs of slow intermediate growth

Andrew Marks, work in progress with Jan Grebík, Václav Rozhoň, and Forte Shinko

Caltech Logic Seminar, Oct 2 2024



Voronoi regions are not a great way to subdivide space.

We will discuss a simple algorithm called **ball carving** for making a cover of a metric space by bounded sets. It comes from distributed algorithms.

- We will discuss a simple algorithm called **ball carving** for making a cover of a metric space by bounded sets. It comes from distributed algorithms.
- I'll then explain how this relates to hyperfiniteness.

- We will discuss a simple algorithm called **ball carving** for making a cover of a metric space by bounded sets. It comes from distributed algorithms.
- I'll then explain how this relates to hyperfiniteness.

Suppose (X, ρ) is an extended metric space (allow $\rho(x, y) = \infty$).

- We will discuss a simple algorithm called **ball carving** for making a cover of a metric space by bounded sets. It comes from distributed algorithms.
- I'll then explain how this relates to hyperfiniteness.

Suppose (X, ρ) is an extended metric space (allow $\rho(x, y) = \infty$).

If $r \in \mathbb{R}$ and $x \in X$, let $B_r(x) = \{y : \rho(y, x) \le r\}$ be the closed r-ball around x.

- We will discuss a simple algorithm called **ball carving** for making a cover of a metric space by bounded sets. It comes from distributed algorithms.
- I'll then explain how this relates to hyperfiniteness.

Suppose (X, ρ) is an extended metric space (allow $\rho(x, y) = \infty$).

If $r \in \mathbb{R}$ and $x \in X$, let $B_r(x) = \{y : \rho(y, x) \le r\}$ be the closed r-ball around x. We'll assume our spaces (X, ρ) are **proper**: $B_r(x)$ is finite for every $x \in X$ and $r \in \mathbb{R}$.

- We will discuss a simple algorithm called **ball carving** for making a cover of a metric space by bounded sets. It comes from distributed algorithms.
- I'll then explain how this relates to hyperfiniteness.

Suppose (X, ρ) is an extended metric space (allow $\rho(x, y) = \infty$).

If $r \in \mathbb{R}$ and $x \in X$, let $B_r(x) = \{y : \rho(y, x) \le r\}$ be the closed r-ball around x. We'll assume our spaces (X, ρ) are **proper**: $B_r(x)$ is finite for every $x \in X$ and $r \in \mathbb{R}$.

Prototypical example: the graph metric on a bounded degree connected graph.

- We will discuss a simple algorithm called **ball carving** for making a cover of a metric space by bounded sets. It comes from distributed algorithms.
- I'll then explain how this relates to hyperfiniteness.

Suppose (X, ρ) is an extended metric space (allow $\rho(x, y) = \infty$).

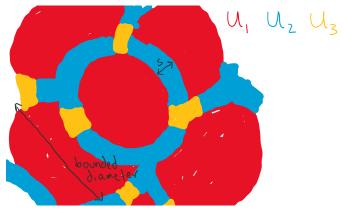
If $r \in \mathbb{R}$ and $x \in X$, let $B_r(x) = \{y : \rho(y, x) \le r\}$ be the closed r-ball around x. We'll assume our spaces (X, ρ) are **proper**: $B_r(x)$ is finite for every $x \in X$ and $r \in \mathbb{R}$.

Prototypical example: the graph metric on a bounded degree connected graph.

 $A, B \subseteq X$ are s-disjoint if $\rho(x, y) > s$ for every $x \in A$ and $y \in B$. The diameter of $A \subseteq X$ is diam $(A) = \sup{\{\rho(x, y) : x, y \in A\}}$.

Suppose (X, ρ) has growth bounded by a subexponential function h so $|B_r(x)| \le h(r)$ for all x, r.

We will make families $\mathcal{U}_1, \dots, \mathcal{U}_n$ of subsets of X, where elements of \mathcal{U}_i are pairwise s-disjoint and have bounded diameter.



Suppose (X, ρ) has growth bounded by a subexponential function h so $|B_r(x)| \le h(r)$ for all x, r.

We will make families $\mathcal{U}_1, \dots, \mathcal{U}_n$ of subsets of X, where elements of \mathcal{U}_i are pairwise s-disjoint and have bounded diameter.

Pick an $x \in X$. Find the least r so that $B_r(x) \le (1 + \epsilon)B_{r-s}(x)$.

Suppose (X, ρ) has growth bounded by a subexponential function h so $|B_r(x)| \le h(r)$ for all x, r.

We will make families $\mathcal{U}_1, \dots, \mathcal{U}_n$ of subsets of X, where elements of \mathcal{U}_i are pairwise s-disjoint and have bounded diameter.

Pick an $x \in X$. Find the least r so that $B_r(x) \leq (1+\epsilon)B_{r-s}(x)$. There exists t so $(1+\epsilon)^{t/s} > h(t)$ since h is subexponential. So $r \leq t$ since otherwise $|B_t(x)| > (1+\epsilon)^{t/s} \geq h(t)$.

Suppose (X, ρ) has growth bounded by a subexponential function h so $|B_r(x)| \le h(r)$ for all x, r.

We will make families $\mathcal{U}_1, \dots, \mathcal{U}_n$ of subsets of X, where elements of \mathcal{U}_i are pairwise s-disjoint and have bounded diameter.

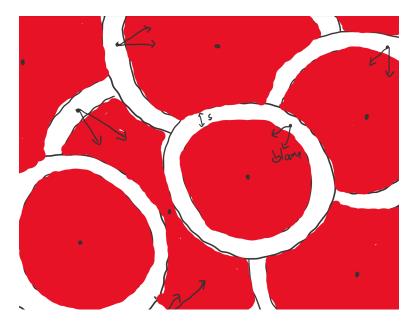
- Pick an $x \in X$. Find the least r so that $B_r(x) \leq (1+\epsilon)B_{r-s}(x)$. There exists t so $(1+\epsilon)^{t/s} > h(t)$ since h is subexponential. So $r \leq t$ since otherwise $|B_t(x)| > (1+\epsilon)^{t/s} \geq h(t)$.
- Add $B_{r-s}(x)$ to \mathcal{U}_1 , and remove $B_r(x)$ from our space X. Since $B_r(x) \leq (1+\epsilon)B_{r-s}(x)$, we have $(B_r(x) \setminus B_{r-s}(x)) \leq \epsilon B_{r-s}(x)$. Each $y \in B_r(x) \setminus B_{r-s}(x)$ we haven't covered "blames" $1/\epsilon$ many points of $B_{r-s}(x)$.

Suppose (X, ρ) has growth bounded by a subexponential function h so $|B_r(x)| \le h(r)$ for all x, r.

We will make families $\mathcal{U}_1, \dots, \mathcal{U}_n$ of subsets of X, where elements of \mathcal{U}_i are pairwise s-disjoint and have bounded diameter.

- Pick an $x \in X$. Find the least r so that $B_r(x) \leq (1+\epsilon)B_{r-s}(x)$. There exists t so $(1+\epsilon)^{t/s} > h(t)$ since h is subexponential. So $r \leq t$ since otherwise $|B_t(x)| > (1+\epsilon)^{t/s} \geq h(t)$.
- Add $B_{r-s}(x)$ to \mathcal{U}_1 , and remove $B_r(x)$ from our space X. Since $B_r(x) \leq (1+\epsilon)B_{r-s}(x)$, we have $(B_r(x) \setminus B_{r-s}(x)) \leq \epsilon B_{r-s}(x)$. Each $y \in B_r(x) \setminus B_{r-s}(x)$ we haven't covered "blames" $1/\epsilon$ many points of $B_{r-s}(x)$.
- ▶ Repeat this process starting at some remaining point y to add another ball to \mathcal{U}_1 . Iterate until nothing is left. The elements of \mathcal{U}_1 all have diameter $\leq 2t$ and are pairwise s-disjoint.

Picture of \mathcal{U}_1

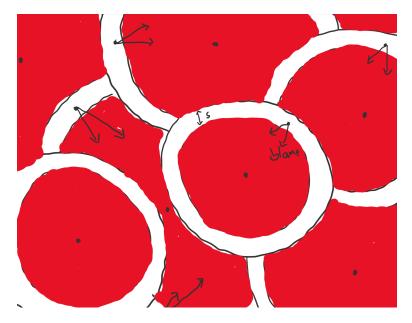


▶ Recursively make \mathcal{U}_{i+1} by working in the subspace $X \setminus \bigcup (\mathcal{U}_1 \cup \ldots \cup \mathcal{U}_i)$, and doing exactly the same process. Because we still have the growth upper bound of h on this subspace, all the calculations are exactly the same so the diameters of the sets in U_{i+1} are still at most 2t.

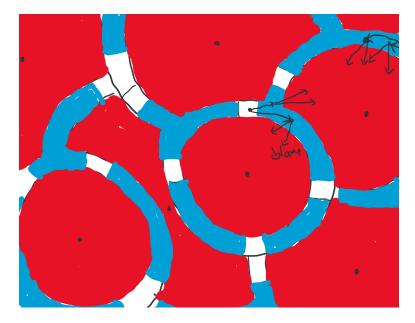
- ▶ Recursively make \mathcal{U}_{i+1} by working in the subspace $X \setminus \bigcup (\mathcal{U}_1 \cup \ldots \cup \mathcal{U}_i)$, and doing exactly the same process. Because we still have the growth upper bound of h on this subspace, all the calculations are exactly the same so the diameters of the sets in U_{i+1} are still at most 2t.
- ▶ If x is not added to $U_1, ... U_n$ at step n, then the blame tree starting at x has height n+1, and each $y \in \bigcup \mathcal{U}_i$ in the tree has blamed $1/\epsilon$ points of $\bigcup \mathcal{U}_{i-1}$ of distance $\leq 2t$. So the tree has at least $(1/\epsilon)^n$ leaves which are all contained in $B_{2nt}(x)$.

- ▶ Recursively make \mathcal{U}_{i+1} by working in the subspace $X \setminus \bigcup (\mathcal{U}_1 \cup \ldots \cup \mathcal{U}_i)$, and doing exactly the same process. Because we still have the growth upper bound of h on this subspace, all the calculations are exactly the same so the diameters of the sets in U_{i+1} are still at most 2t.
- ▶ If x is not added to $U_1, ... U_n$ at step n, then the blame tree starting at x has height n+1, and each $y \in \bigcup \mathcal{U}_i$ in the tree has blamed $1/\epsilon$ points of $\bigcup \mathcal{U}_{i-1}$ of distance $\leq 2t$. So the tree has at least $(1/\epsilon)^n$ leaves which are all contained in $B_{2nt}(x)$.
- Since h is subexponential, there is a finite m so $(1/\epsilon)^m > h(2mt)$ so the process must cover every element of the space after n steps where n < m. $\mathcal{U}_1, \ldots, \mathcal{U}_n$ is a cover of the space by s-disjoint sets.

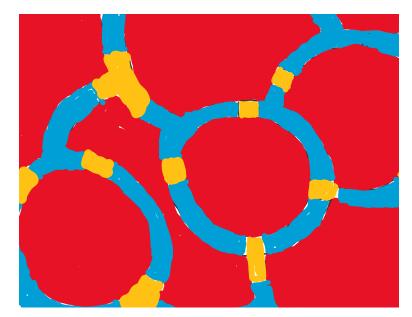
Picture of the construction of $\mathcal{U}_1, \mathcal{U}_2, \dots, \mathcal{U}_n$



Picture of the construction of $\mathcal{U}_1, \mathcal{U}_2, \dots, \mathcal{U}_n$



Picture of the construction of $\mathcal{U}_1, \mathcal{U}_2, \dots, \mathcal{U}_n$



Suppose $B_r(x) \leq r^d$. Then for each s, let $\epsilon = 1/s^2$ and $t = s^4$. Then $(1+1/\epsilon)^{t/s} \approx e^s > s^{4d}$ provided s is sufficiently large. So the sets in the covers have diameter at most $2t = 2s^4$. The size of the blame tree after n steps is $(1/\epsilon)^n = s^{2n}$. But it is contained in a ball of radius $2ns^4$ which contains at most $(2ns^4)^d$ points. So there is a constant n so for all s, $s^{2n} > (2ns^4)^d = O(s^{4d})$. So for all s, there is a constant n so that there is a cover $\mathcal{U}_1, \ldots, \mathcal{U}_n$ by s-disjoint families of sets of diameter at most $2s^4$.

Suppose $B_r(x) \leq r^d$. Then for each s, let $\epsilon = 1/s^2$ and $t = s^4$. Then $(1+1/\epsilon)^{t/s} \approx e^s > s^{4d}$ provided s is sufficiently large. So the sets in the covers have diameter at most $2t = 2s^4$. The size of the blame tree after n steps is $(1/\epsilon)^n = s^{2n}$. But it is contained in a ball of radius $2ns^4$ which contains at most $(2ns^4)^d$ points. So there is a constant n so for all s, $s^{2n} > (2ns^4)^d = O(s^{4d})$. So for all s, there is a constant n so that there is a cover $\mathcal{U}_1, \ldots, \mathcal{U}_n$ by s-disjoint families of sets of diameter at most $2s^4$.

Cor: a graph of polynomial growth has finite asymptotic dimension.

Suppose $B_r(x) \leq r^d$. Then for each s, let $\epsilon = 1/s^2$ and $t = s^4$. Then $(1+1/\epsilon)^{t/s} \approx e^s > s^{4d}$ provided s is sufficiently large. So the sets in the covers have diameter at most $2t = 2s^4$. The size of the blame tree after n steps is $(1/\epsilon)^n = s^{2n}$. But it is contained in a ball of radius $2ns^4$ which contains at most $(2ns^4)^d$ points. So there is a constant n so for all s, $s^{2n} > (2ns^4)^d = O(s^{4d})$. So for all s, there is a constant n so that there is a cover $\mathcal{U}_1, \ldots, \mathcal{U}_n$ by s-disjoint families of sets of diameter at most $2s^4$.

Cor: a graph of polynomial growth has finite asymptotic dimension.

This construction can be made Borel using distance coloring.

Suppose $B_r(x) \leq r^d$. Then for each s, let $\epsilon = 1/s^2$ and $t = s^4$. Then $(1+1/\epsilon)^{t/s} \approx e^s > s^{4d}$ provided s is sufficiently large. So the sets in the covers have diameter at most $2t = 2s^4$. The size of the blame tree after n steps is $(1/\epsilon)^n = s^{2n}$. But it is contained in a ball of radius $2ns^4$ which contains at most $(2ns^4)^d$ points. So there is a constant n so for all s, $s^{2n} > (2ns^4)^d = O(s^{4d})$. So for all s, there is a constant n so that there is a cover $\mathcal{U}_1, \ldots, \mathcal{U}_n$ by s-disjoint families of sets of diameter at most $2s^4$.

Cor: a graph of polynomial growth has finite asymptotic dimension.

This construction can be made Borel using distance coloring.

Corollary (Bernshteyn-Yu)

If G is a Borel graph of polynomial growth, then the graph metric ρ_G has finite Borel asymptotic dimension. Hence G is hyperfinite.

Hyperfiniteness

An equivalence relation E on a Polish space X is **hyperfinite** if it is an increasing union of Borel equivalence relations with finite classes.

Hyperfiniteness

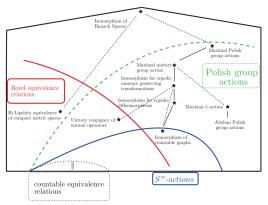
An equivalence relation E on a Polish space X is **hyperfinite** if it is an increasing union of Borel equivalence relations with finite classes.

The hyperfinite Borel equivalence relations are the simplest nontrivial class of Borel equivalence relations by the Glimm-Effros dichotomy of Harrington-Kechris-Louveau.

Hyperfiniteness

An equivalence relation E on a Polish space X is **hyperfinite** if it is an increasing union of Borel equivalence relations with finite classes.

The hyperfinite Borel equivalence relations are the simplest nontrivial class of Borel equivalence relations by the Glimm-Effros dichotomy of Harrington-Kechris-Louveau.



There are many open questions about hyperfiniteness:

The increasing union problem (Dougherty-Jackson-Kechris 1994): if $(E_n)_{n\in\omega}$ are hyperfinite Borel equivalence relations where $E_0\subseteq E_1\subseteq\ldots$, is $\bigcup_n E_n$ hyperfinite?

- ▶ The increasing union problem (Dougherty-Jackson-Kechris 1994): if $(E_n)_{n\in\omega}$ are hyperfinite Borel equivalence relations where $E_0\subseteq E_1\subseteq\ldots$, is $\bigcup_n E_n$ hyperfinite?
- (Weiss, 1984): is every action of a countable amenable group hyperfinite? (does group-theoretic tameness correspond to descriptive-set-theoretic simplicity).

- ▶ The increasing union problem (Dougherty-Jackson-Kechris 1994): if $(E_n)_{n\in\omega}$ are hyperfinite Borel equivalence relations where $E_0\subseteq E_1\subseteq\ldots$, is $\bigcup_n E_n$ hyperfinite?
- (Weiss, 1984): is every action of a countable amenable group hyperfinite? (does group-theoretic tameness correspond to descriptive-set-theoretic simplicity).
 - ► ℤ (Slaman-Steel 1988)

- ▶ The increasing union problem (Dougherty-Jackson-Kechris 1994): if $(E_n)_{n\in\omega}$ are hyperfinite Borel equivalence relations where $E_0\subseteq E_1\subseteq\ldots$, is $\bigcup_n E_n$ hyperfinite?
- (Weiss, 1984): is every action of a countable amenable group hyperfinite? (does group-theoretic tameness correspond to descriptive-set-theoretic simplicity).
 - Z (Slaman-Steel 1988)
 - $ightharpoonup \mathbb{Z}^n$ (Weiss 1984)

- ▶ The increasing union problem (Dougherty-Jackson-Kechris 1994): if $(E_n)_{n\in\omega}$ are hyperfinite Borel equivalence relations where $E_0\subseteq E_1\subseteq\ldots$, is $\bigcup_n E_n$ hyperfinite?
- (Weiss, 1984): is every action of a countable amenable group hyperfinite? (does group-theoretic tameness correspond to descriptive-set-theoretic simplicity).
 - ► Z (Slaman-Steel 1988)
 - $ightharpoonup \mathbb{Z}^n$ (Weiss 1984)
 - groups of polynomial growth (Jackson-Kechris-Louveau 2001)

- ▶ The increasing union problem (Dougherty-Jackson-Kechris 1994): if $(E_n)_{n\in\omega}$ are hyperfinite Borel equivalence relations where $E_0\subseteq E_1\subseteq\ldots$, is $\bigcup_n E_n$ hyperfinite?
- (Weiss, 1984): is every action of a countable amenable group hyperfinite? (does group-theoretic tameness correspond to descriptive-set-theoretic simplicity).
 - ► Z (Slaman-Steel 1988)
 - $ightharpoonup \mathbb{Z}^n$ (Weiss 1984)
 - groups of polynomial growth (Jackson-Kechris-Louveau 2001)
 - countable abelian groups (Gao-Jackson 2015)

- ▶ The increasing union problem (Dougherty-Jackson-Kechris 1994): if $(E_n)_{n\in\omega}$ are hyperfinite Borel equivalence relations where $E_0\subseteq E_1\subseteq\ldots$, is $\bigcup_n E_n$ hyperfinite?
- (Weiss, 1984): is every action of a countable amenable group hyperfinite? (does group-theoretic tameness correspond to descriptive-set-theoretic simplicity).
 - ► Z (Slaman-Steel 1988)
 - $ightharpoonup \mathbb{Z}^n$ (Weiss 1984)
 - groups of polynomial growth (Jackson-Kechris-Louveau 2001)
 - countable abelian groups (Gao-Jackson 2015)
 - locally nilpotent groups (Seward-Schneider 2013)

- ▶ The increasing union problem (Dougherty-Jackson-Kechris 1994): if $(E_n)_{n\in\omega}$ are hyperfinite Borel equivalence relations where $E_0\subseteq E_1\subseteq\ldots$, is $\bigcup_n E_n$ hyperfinite?
- (Weiss, 1984): is every action of a countable amenable group hyperfinite? (does group-theoretic tameness correspond to descriptive-set-theoretic simplicity).
 - ► Z (Slaman-Steel 1988)
 - $ightharpoonup \mathbb{Z}^n$ (Weiss 1984)
 - groups of polynomial growth (Jackson-Kechris-Louveau 2001)
 - countable abelian groups (Gao-Jackson 2015)
 - locally nilpotent groups (Seward-Schneider 2013)
 - polycyclic groups (Conley, Jackson, M., Seward, Tucker-Drob)

Open questions about hyperfiniteness

There are many open questions about hyperfiniteness:

- ▶ The increasing union problem (Dougherty-Jackson-Kechris 1994): if $(E_n)_{n\in\omega}$ are hyperfinite Borel equivalence relations where $E_0\subseteq E_1\subseteq\ldots$, is $\bigcup_n E_n$ hyperfinite?
- (Weiss, 1984): is every action of a countable amenable group hyperfinite? (does group-theoretic tameness correspond to descriptive-set-theoretic simplicity).
 - ▶ Z (Slaman-Steel 1988)
 - $ightharpoonup \mathbb{Z}^n$ (Weiss 1984)
 - groups of polynomial growth (Jackson-Kechris-Louveau 2001)
 - countable abelian groups (Gao-Jackson 2015)
 - locally nilpotent groups (Seward-Schneider 2013)
 - polycyclic groups (Conley, Jackson, M., Seward, Tucker-Drob)
 - ➤ Some of the above proofs use intricate understandings of Følner set in these groups and their tilings, but we'd like easier geometric/graph theoretic tools.

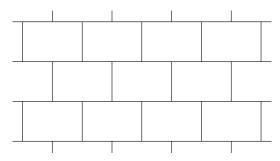
- "Large-scale" analog of covering dimension. asdim $(X) \le d$ if
 - ▶ For every (large) r > 0, there is a cover \mathcal{U} of X by sets of uniformly bounded diameter, so every r-ball $B_r(x)$ intersects at most d+1 elements of \mathcal{U} .

- "Large-scale" analog of covering dimension. asdim $(X) \le d$ if
 - For every (large) r > 0, there is a cover \mathcal{U} of X by sets of uniformly bounded diameter, so every r-ball $B_r(x)$ intersects at most d+1 elements of \mathcal{U} .
 - ▶ Equivalently, for every r > 0, there is an cover $\mathcal{U} = \mathcal{U}_1, \dots, \mathcal{U}_{d+1}$ so the \mathcal{U}_i are r-disjoint and have uniformly bounded diameter.

"Large-scale" analog of covering dimension. asdim $(X) \le d$ if

- ▶ For every (large) r > 0, there is a cover \mathcal{U} of X by sets of uniformly bounded diameter, so every r-ball $B_r(x)$ intersects at most d+1 elements of \mathcal{U} .
- ▶ Equivalently, for every r > 0, there is an cover $\mathcal{U} = \mathcal{U}_1, \dots, \mathcal{U}_{d+1}$ so the \mathcal{U}_i are r-disjoint and have uniformly bounded diameter.

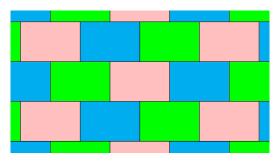
 $\operatorname{\mathsf{asdim}}(\mathbb{R}^2) \leq 2$:



"Large-scale" analog of covering dimension. asdim $(X) \le d$ if

- ▶ For every (large) r > 0, there is a cover \mathcal{U} of X by sets of uniformly bounded diameter, so every r-ball $B_r(x)$ intersects at most d+1 elements of \mathcal{U} .
- ▶ Equivalently, for every r > 0, there is an cover $\mathcal{U} = \mathcal{U}_1, \dots, \mathcal{U}_{d+1}$ so the \mathcal{U}_i are r-disjoint and have uniformly bounded diameter.

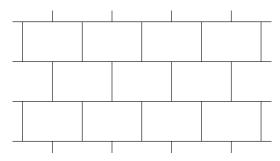
 $\operatorname{asdim}(\mathbb{R}^2) \leq 2$:



"Large-scale" analog of covering dimension. asdim $(X) \le d$ if

- ▶ For every (large) r > 0, there is a cover \mathcal{U} of X by sets of uniformly bounded diameter, so every r-ball $B_r(x)$ intersects at most d+1 elements of \mathcal{U} .
- ▶ Equivalently, for every r > 0, there is an cover $\mathcal{U} = \mathcal{U}_1, \dots, \mathcal{U}_{d+1}$ so the \mathcal{U}_i are r-disjoint and have uniformly bounded diameter.

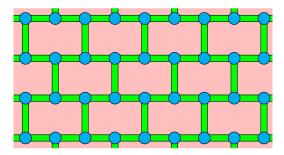
 $\operatorname{\mathsf{asdim}}(\mathbb{R}^2) \leq 2$:



"Large-scale" analog of covering dimension. asdim $(X) \le d$ if

- ▶ For every (large) r > 0, there is a cover \mathcal{U} of X by sets of uniformly bounded diameter, so every r-ball $B_r(x)$ intersects at most d+1 elements of \mathcal{U} .
- ▶ Equivalently, for every r > 0, there is an cover $\mathcal{U} = \mathcal{U}_1, \dots, \mathcal{U}_{d+1}$ so the \mathcal{U}_i are r-disjoint and have uniformly bounded diameter.

 $\operatorname{\mathsf{asdim}}(\mathbb{R}^2) \leq 2$:



▶ If X is bounded, then asdim(X) = 0.

- ▶ If X is bounded, then asdim(X) = 0.
- Asymptotic dimension is an invariant of quasi-isometry or coarse equivalence.

- ▶ If X is bounded, then asdim(X) = 0.
- Asymptotic dimension is an invariant of quasi-isometry or coarse equivalence.
- ightharpoonup asdim(\mathbb{Z}^n) = asdim(\mathbb{Z}^n) = n.

- ▶ If X is bounded, then asdim(X) = 0.
- Asymptotic dimension is an invariant of quasi-isometry or coarse equivalence.
- ightharpoonup asdim(\mathbb{Z}^n) = asdim(\mathbb{Z}^n) = n.
- ▶ $asdim(X \times Y) \le asdim(X) + asdim(Y)$ (Bell-Dranishnikov).

- ▶ If X is bounded, then asdim(X) = 0.
- Asymptotic dimension is an invariant of quasi-isometry or coarse equivalence.
- ightharpoonup asdim(\mathbb{Z}^n) = asdim(\mathbb{Z}^n) = n.
- ▶ $\operatorname{asdim}(X \times Y) \leq \operatorname{asdim}(X) + \operatorname{asdim}(Y)$ (Bell-Dranishnikov).
- ▶ $\operatorname{asdim}(\mathbb{F}_n) \leq 1$.

- ▶ If X is bounded, then asdim(X) = 0.
- Asymptotic dimension is an invariant of quasi-isometry or coarse equivalence.
- ightharpoonup asdim(\mathbb{Z}^n) = asdim(\mathbb{Z}^n) = n.
- ▶ $asdim(X \times Y) \le asdim(X) + asdim(Y)$ (Bell-Dranishnikov).
- ▶ $\operatorname{asdim}(\mathbb{F}_n) \leq 1$.
- ▶ If $X \subseteq Y$, then $\operatorname{asdim}(X) \leq \operatorname{asdim}(Y)$. So groups that contain (coarse embeddings of) \mathbb{Z}^n for every n have infinite asymptotic dimension. E.g. $\mathbb{Z} \wr \mathbb{Z}$, or Thompson's group F, or the Grigorchuk group G.

Suppose (X, ρ) is a Borel proper extended metric space, such as the graph metric on a locally finite Borel graph.

Suppose (X, ρ) is a Borel proper extended metric space, such as the graph metric on a locally finite Borel graph.

Define $\operatorname{asdim}_B(X) \leq d$ if:

For every r > 0, there is a Borel cover \mathcal{U} of X by subsets of uniformly bounded diameter so every r-ball $B_r(x)$ in X intersects at most d + 1 elements of \mathcal{U} .

Suppose (X, ρ) is a Borel proper extended metric space, such as the graph metric on a locally finite Borel graph.

Define $\operatorname{asdim}_B(X) \leq d$ if:

- For every r > 0, there is a Borel cover \mathcal{U} of X by subsets of uniformly bounded diameter so every r-ball $B_r(x)$ in X intersects at most d + 1 elements of \mathcal{U} .
- ▶ Equivalently, for every r > 0, there is a Borel cover $\mathcal{U} = \mathcal{U}_1, \dots, \mathcal{U}_{d+1}$ of X so the \mathcal{U}_i are r-disjoint, Borel, and have uniformly bounded diameter.

Suppose (X, ρ) is a Borel proper extended metric space, such as the graph metric on a locally finite Borel graph.

Define $\operatorname{asdim}_B(X) \leq d$ if:

- For every r > 0, there is a Borel cover \mathcal{U} of X by subsets of uniformly bounded diameter so every r-ball $B_r(x)$ in X intersects at most d + 1 elements of \mathcal{U} .
- ▶ Equivalently, for every r > 0, there is a Borel cover $\mathcal{U} = \mathcal{U}_1, \dots, \mathcal{U}_{d+1}$ of X so the \mathcal{U}_i are r-disjoint, Borel, and have uniformly bounded diameter.

The proof of the equivalence follows the proof for classical asymptotic dimension.

Suppose (X, ρ) is a Borel proper extended metric space, such as the graph metric on a locally finite Borel graph.

Define $\operatorname{asdim}_B(X) \leq d$ if:

- For every r > 0, there is a Borel cover \mathcal{U} of X by subsets of uniformly bounded diameter so every r-ball $B_r(x)$ in X intersects at most d + 1 elements of \mathcal{U} .
- ▶ Equivalently, for every r > 0, there is a Borel cover $\mathcal{U} = \mathcal{U}_1, \dots, \mathcal{U}_{d+1}$ of X so the \mathcal{U}_i are r-disjoint, Borel, and have uniformly bounded diameter.

The proof of the equivalence follows the proof for classical asymptotic dimension.

Theorem (Conley, Jackson, Seward, M., Tucker-Drob)

Suppose (X, ρ) is a Borel proper extended metric space with finite asymptotic dimension. Then E_{ρ} is hyperfinite, where $x E_{\rho} y$ if $\rho(x, y) < \infty$.

Generalizing finite asymptotic dimension

Suppose (X, ρ) is a proper extended metric space. The **dimension** function of (X, ρ) is the function $c: (0, \infty) \times (0, \infty) \to \mathbb{N}$ where c(r, s) is the least n so that there is a cover $\mathcal{U}_1, \ldots, \mathcal{U}_n$ of X by n families of s-disjoint sets of diameter at most r.

Generalizing finite asymptotic dimension

Suppose (X, ρ) is a proper extended metric space. The **dimension function** of (X, ρ) is the function $c: (0, \infty) \times (0, \infty) \to \mathbb{N}$ where c(r, s) is the least n so that there is a cover $\mathcal{U}_1, \ldots, \mathcal{U}_n$ of X by n families of s-disjoint sets of diameter at most r.

We also make the analogous definition for the Borel dimension function of a Borel extended metric space.

Generalizing finite asymptotic dimension

Suppose (X, ρ) is a proper extended metric space. The **dimension** function of (X, ρ) is the function $c: (0, \infty) \times (0, \infty) \to \mathbb{N}$ where c(r, s) is the least n so that there is a cover $\mathcal{U}_1, \ldots, \mathcal{U}_n$ of X by n families of s-disjoint sets of diameter at most r.

We also make the analogous definition for the Borel dimension function of a Borel extended metric space.

In this language, (X, ρ) has asymptotic dimension d if for every s there exists an r so that $c(s, r) \leq d + 1$.

A slow enough growing dimension function still implies hyperfiniteness even if $\sup_s \inf_r c(s,r) = \infty$:

Theorem

Suppose (ρ, X) is Borel proper extended metric space with Borel dimension function c. Suppose there exists sequences $(a_n)_{n\in\omega}$, $(r_n)_{n\in\omega}$, and $(s_n)_{n\in\omega}$ of positive integers such that $s_n\geq 4a_{n+1}r_{n-1}$, and $a_n\geq c(r_n,s_n)$. Then (X,ρ) is hyperfinite.

A slow enough growing dimension function still implies hyperfiniteness even if $\sup_s \inf_r c(s, r) = \infty$:

Theorem

Suppose (ρ, X) is Borel proper extended metric space with Borel dimension function c. Suppose there exists sequences $(a_n)_{n\in\omega}$, $(r_n)_{n\in\omega}$, and $(s_n)_{n\in\omega}$ of positive integers such that $s_n \geq 4a_{n+1}r_{n-1}$, and $a_n \geq c(r_n, s_n)$. Then (X, ρ) is hyperfinite.

Proof sketch: Given a collection \mathcal{U} of subsets of X, let $E_{\mathcal{U}}$ be the equivalence relation where $x E_{\mathcal{U}} y$ if for all $U \in \mathcal{U}$, $x \in U \leftrightarrow y \in U$. So if \mathcal{U} is a cover of X by finite sets, then $E_{\mathcal{U}}$ has finite classes.

A slow enough growing dimension function still implies hyperfiniteness even if $\sup_s \inf_r c(s,r) = \infty$:

Theorem

Suppose (ρ, X) is Borel proper extended metric space with Borel dimension function c. Suppose there exists sequences $(a_n)_{n\in\omega}$, $(r_n)_{n\in\omega}$, and $(s_n)_{n\in\omega}$ of positive integers such that $s_n\geq 4a_{n+1}r_{n-1}$, and $a_n\geq c(r_n,s_n)$. Then (X,ρ) is hyperfinite.

Proof sketch: Given a collection $\mathcal U$ of subsets of X, let $E_{\mathcal U}$ be the equivalence relation where $x \ E_{\mathcal U} \ y$ if for all $U \in \mathcal U$, $x \in \mathcal U \leftrightarrow y \in \mathcal U$. So if $\mathcal U$ is a cover of X by finite sets, then $E_{\mathcal U}$ has finite classes.

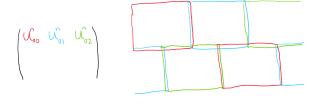
Say collections \mathcal{U}, \mathcal{V} of subsets of X are have disjoint boundaries if for all $A \in \mathcal{U}$ and $B \in \mathcal{V}$, $B_1(A) \setminus A$ and $B_1(B) \setminus B$ are disjoint. Hence if $\rho(x,y) = 1$, then $x \in \mathcal{U}$ y or $x \in \mathcal{U}$ y.

Inductively build a sequence of $(a_{n+1}+1) \times a_n$ matrices (\mathcal{U}_{ij}^n) where:

▶ The first row $U_{10}^n, \ldots, U_{1a_n}^n$ is a Borel cover by disjoint sets of diameter at most r_n that are s_n -separated.

Inductively build a sequence of $(a_{n+1}+1) \times a_n$ matrices (\mathcal{U}_{ij}^n) where:

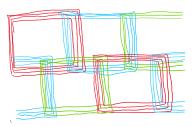
▶ The first row $\mathcal{U}_{10}^n, \ldots, \mathcal{U}_{1a_n}^n$ is a Borel cover by disjoint sets of diameter at most r_n that are s_n -separated.



▶ The *i*th row $\mathcal{U}_{i1}^n, \ldots, \mathcal{U}_{ia_n}^n$ is a Borel cover by disjoint sets of diameter at most $r_n + 2ir_{n-1}$ that are $s_n - 4ir_{n-1}$ -separated.

Inductively build a sequence of $(a_{n+1}+1) \times a_n$ matrices (\mathcal{U}_{ij}^n) where:

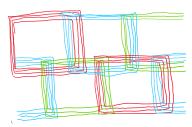
▶ The first row $U_{10}^n, \ldots, U_{1a_n}^n$ is a Borel cover by disjoint sets of diameter at most r_n that are s_n -separated.



- ▶ The *i*th row $U_{i1}^n, \ldots, U_{ia_n}^n$ is a Borel cover by disjoint sets of diameter at most $r_n + 2ir_{n-1}$ that are $s_n 4ir_{n-1}$ -separated.
- ▶ The *j*th column in (\mathcal{U}_{ij}^n) has pairwise disjoint boundaries

Inductively build a sequence of $(a_{n+1}+1) \times a_n$ matrices (\mathcal{U}_{ij}^n) where:

▶ The first row $U_{10}^n, \ldots, U_{1a_n}^n$ is a Borel cover by disjoint sets of diameter at most r_n that are s_n -separated.



- ▶ The *i*th row $U_{i1}^n, \ldots, U_{ia_n}^n$ is a Borel cover by disjoint sets of diameter at most $r_n + 2ir_{n-1}$ that are $s_n 4ir_{n-1}$ -separated.
- The *j*th column in (\mathcal{U}_{ij}^n) has pairwise disjoint boundaries and each $U \in \mathcal{U}_{ij}^n$ is a union of sets from the *j*th row of the previous matrix \mathcal{U}_{ij}^{n-1} .

The jth column is boundary-disjoint and built from the jth row of the previous matrix

\[
\begin{align*}
\langle n^{-1} \\ \langle n^{-1} \\ \langle \langle n^{-1} \\ \langle \langle \langle n^{-1} \\ \langle \lang

Suppose $\rho(x,y)=1$. Because each column has disjoint boundaries, x and y are inequivalent in at most one equivalence relation $E_{\mathcal{U}_{ij}^n}$ from each column. Since the jth column of U_{ij}^{n+1} is built from the jth row of U_{ij}^n , inequivalence propagates backwards from the jth column to the jth row of previous matrix.

Suppose $\rho(x,y)=1$. Because each column has disjoint boundaries, x and y are inequivalent in at most one equivalence relation $E_{\mathcal{U}_{ij}^n}$ from each column. Since the jth column of U_{ij}^{n+1} is built from the jth row of U_{ij}^n , inequivalence propagates backwards from the jth column to the jth row of previous matrix.

Hence there can be at most a_0 matrices where x,y are inequivalent in the last row. Let $\mathcal{U}_{d+1}^n = \bigcup_i \mathcal{U}_{a_{n+1}i}^n$ be the cover from the last row, so x,y are $E_{\mathcal{U}_{d+1}^n}$ -inequivalent for at most a_0 values of n. Letting $\mathcal{V}^n = \bigcup_{m \geq n} \mathcal{U}_{d+1}^m$, $E_{\mathcal{V}^n}$ witnesses that E_{ρ} is hyperfinite. \square

Finishing the proof

Theorem

Suppose (X, ρ) is a proper Borel extended metric space and there is a constant C so that $B_r(x) \leq C \exp(r^{0.15229})$. Then E_ρ is hyperfinite.

Proof idea: use ball carving to show that if $B_r(x) \leq C \exp(r^{\gamma})$, then the Borel dimension function of (X, ρ) satisfies $c(r, s) \leq r^{\gamma/(1-\gamma)}$ provided that $s \ll r^{1-\gamma}$.

Finishing the proof

Theorem

Suppose (X, ρ) is a proper Borel extended metric space and there is a constant C so that $B_r(x) \leq C \exp(r^{0.15229})$. Then E_ρ is hyperfinite.

Proof idea: use ball carving to show that if $B_r(x) \leq C \exp(r^{\gamma})$, then the Borel dimension function of (X, ρ) satisfies $c(r, s) \leq r^{\gamma/(1-\gamma)}$ provided that $s \ll r^{1-\gamma}$.

Let $r_n=2^{b^n}$, $s_n=r_n^{1-\gamma}$ and $a_n=2^{\gamma/(1-\gamma)b^n}$ where $b=(1-\gamma)^2/(2\gamma)$. These satisfy the hypotheses of our earlier theorem on slow dimension growth giving hyperfiniteness, provided $(1-\gamma)^3/(2\gamma) \geq \gamma/(1-\gamma)((1-\gamma)^2/(2\gamma))^2 + 1$. Solving to find the root of this cubic we get $\gamma \approx 0.15229$.

What groups does this apply to?

Our results show that if Γ is a finitely generated group of growth slower than $\exp(n^{0.15229})$, then free actions of Γ are hyperfinite. What groups are there of superpolynomial growth bounded by $\exp(n^{0.15229})$?

What groups does this apply to?

Our results show that if Γ is a finitely generated group of growth slower than $\exp(n^{0.15229})$, then free actions of Γ are hyperfinite. What groups are there of superpolynomial growth bounded by $\exp(n^{0.15229})$?

Maybe none:

Conjecture (The gap conjecture, Grigorchuck 1990)

Any group of superpolynomial growth has growth $\succeq \exp(\sqrt{n})$.

What groups does this apply to?

Our results show that if Γ is a finitely generated group of growth slower than $\exp(n^{0.15229})$, then free actions of Γ are hyperfinite. What groups are there of superpolynomial growth bounded by $\exp(n^{0.15229})$?

Maybe none:

Conjecture (The gap conjecture, Grigorchuck 1990)

Any group of superpolynomial growth has growth $\succeq \exp(\sqrt{n})$.

Maybe some:

Tom Hutchcroft: "there is no compelling reason to believe the gap conjecture is true."

Open questions

▶ If (X, ρ) is a Borel proper extended metric space of uniformly subexponential growth, is E_{ρ} hyperfinite?

Open questions

- ▶ If (X, ρ) is a Borel proper extended metric space of uniformly subexponential growth, is E_{ρ} hyperfinite?
- Does subexponential growth imply finite asymptotic separation index?

Open questions

- ▶ If (X, ρ) is a Borel proper extended metric space of uniformly subexponential growth, is E_{ρ} hyperfinite?
- Does subexponential growth imply finite asymptotic separation index?
- What Borel dimension functions imply hyperfiniteness? (There is currently a large gap between the logarithmic growth we know gives hyperfiniteness, and the exponential growth we know exists in non-μ-hyperfinite pmp graphs).

Thanks!