Construction and Obstruction Results in Baire Measurable Combinatorics

Clark Lyons Eötvös Loránd University and the Alfréd Rényi Institute of Mathematics

> Dec 2024 Caltech Logic Colloquium

Definition

A Borel graph G = (V, E) is a graph with vertex set that is a Polish space and edge set $E \subseteq V^2$ that is Borel.

Definition

A Borel graph G = (V, E) is a graph with vertex set that is a Polish space and edge set $E \subseteq V^2$ that is Borel.

Given a Borel graph G, we can consider Borel colorings, Borel matchings, Borel orientations, etc. of G.

Definition

A Borel graph G = (V, E) is a graph with vertex set that is a Polish space and edge set $E \subseteq V^2$ that is Borel.

Given a Borel graph G, we can consider Borel colorings, Borel matchings, Borel orientations, etc. of G.

We also consider Borel labelings which are only defined on a comeager invariant set of vertices, or which are only defined on a conull invariant set of vertices for a Borel probability measure μ on X.

Definition

A Borel graph G = (V, E) is a graph with vertex set that is a Polish space and edge set $E \subseteq V^2$ that is Borel.

Given a Borel graph G, we can consider Borel colorings, Borel matchings, Borel orientations, etc. of G.

We also consider Borel labelings which are only defined on a comeager invariant set of vertices, or which are only defined on a conull invariant set of vertices for a Borel probability measure μ on X.

We call such colorings **Baire measurable** or μ -measurable.

Definition

Given a countable group Γ and a finite subset $S \subseteq \Gamma$ and a Borel action a of Γ on a Polish space X, we can form the **Schreier graph** Sch(a, S). In this graph, distinct vertices x and y are connected by an edge if and only if $x = s \cdot y$ for some $s \in S$.

Definition

Given a countable group Γ and a finite subset $S \subseteq \Gamma$ and a Borel action a of Γ on a Polish space X, we can form the **Schreier graph** Sch(a, S). In this graph, distinct vertices x and y are connected by an edge if and only if $x = s \cdot y$ for some $s \in S$.

By the **Lusin–Novikov uniformization theorem** every locally countable Borel graph is generated by a countable collection of Borel automorphisms.

Definition

Given a countable group Γ and a finite subset $S \subseteq \Gamma$ and a Borel action a of Γ on a Polish space X, we can form the **Schreier graph** Sch(a, S). In this graph, distinct vertices x and y are connected by an edge if and only if $x = s \cdot y$ for some $s \in S$.

By the **Lusin–Novikov uniformization theorem** every locally countable Borel graph is generated by a countable collection of Borel automorphisms.

If μ is a Borel probability measure on V, we say that G=(V,E) preserves μ if some/any family of Borel automorphisms generating G preserve μ .

Definition

Given a countable group Γ and a finite subset $S \subseteq \Gamma$ and a Borel action a of Γ on a Polish space X, we can form the **Schreier graph** Sch(a, S). In this graph, distinct vertices x and y are connected by an edge if and only if $x = s \cdot y$ for some $s \in S$.

By the **Lusin–Novikov uniformization theorem** every locally countable Borel graph is generated by a countable collection of Borel automorphisms.

If μ is a Borel probability measure on V, we say that G=(V,E) preserves μ if some/any family of Borel automorphisms generating G preserve μ .

For a Polish space X. Let F(S,X) be the Schreier graph on the **free part** of the shift $\Gamma \curvearrowright X^{\Gamma}$.

Definition

Given a countable group Γ and a finite subset $S \subseteq \Gamma$ and a Borel action a of Γ on a Polish space X, we can form the **Schreier graph** Sch(a, S). In this graph, distinct vertices x and y are connected by an edge if and only if $x = s \cdot y$ for some $s \in S$.

By the **Lusin–Novikov uniformization theorem** every locally countable Borel graph is generated by a countable collection of Borel automorphisms.

If μ is a Borel probability measure on V, we say that G=(V,E) preserves μ if some/any family of Borel automorphisms generating G preserve μ .

For a Polish space X. Let F(S,X) be the Schreier graph on the **free part** of the shift $\Gamma \curvearrowright X^{\Gamma}$.

For any Borel probability measure ν on X, the free part of the shift preserves the product measure $\mu = \nu^{|\Gamma|}$.

Theorem (Lyons, Nazarov) '09

If G is a bipartite Borel graph which preserves μ and is **measure-expansive**, then G has a μ -measurable perfect matching.

Theorem (Lyons, Nazarov) '09

If G is a bipartite Borel graph which preserves μ and is **measure-expansive**, then G has a μ -measurable perfect matching.

In particular if Γ is a nonamenable group, and S is a finite set of generators such that the Cayley graph is bipartite, then the free part of the shift F(S,[0,1]) has a μ -measurable perfect matching.

Theorem (Lyons, Nazarov) '09

If G is a bipartite Borel graph which preserves μ and is **measure-expansive**, then G has a μ -measurable perfect matching.

In particular if Γ is a nonamenable group, and S is a finite set of generators such that the Cayley graph is bipartite, then the free part of the shift F(S,[0,1]) has a μ -measurable perfect matching.

Measure-expansion says that there exists $\varepsilon>0$ such that for any measureable decomposition $V=V_0\sqcup V_1$ we have

$$\mu_{\text{edge}}(E(V_0, V_1)) \geq \varepsilon \mu(V_0) \mu(V_1).$$

Theorem (Lyons, Nazarov) '09

If G is a bipartite Borel graph which preserves μ and is **measure-expansive**, then G has a μ -measurable perfect matching.

In particular if Γ is a nonamenable group, and S is a finite set of generators such that the Cayley graph is bipartite, then the free part of the shift F(S,[0,1]) has a μ -measurable perfect matching.

Measure-expansion says that there exists $\varepsilon>0$ such that for any measureable decomposition $V=V_0\sqcup V_1$ we have

$$\mu_{\mathsf{edge}}(E(V_0, V_1)) \geq \varepsilon \mu(V_0) \mu(V_1).$$

Theorem (Csoka, Lippner) '12

For any nonamenable Γ and finite generating set S, the free part of the shift F(S,[0,1]) has a μ -measurable perfect matching.

Theorem (Marks, Unger) '15

If G is a bipartite Borel graph which is **combinatorially expansive**, then G has a Baire measurable perfect matching.

Theorem (Marks, Unger) '15

If G is a bipartite Borel graph which is **combinatorially expansive**, then G has a Baire measurable perfect matching.

In particular if Γ is a nonamenable group, and S is a finite set of generators such that the Cayley graph is bipartite, then any Schreier graph of a free Borel action of Γ has a Baire measurable perfect matching.

Theorem (Marks, Unger) '15

If G is a bipartite Borel graph which is **combinatorially expansive**, then G has a Baire measurable perfect matching.

In particular if Γ is a nonamenable group, and S is a finite set of generators such that the Cayley graph is bipartite, then any Schreier graph of a free Borel action of Γ has a Baire measurable perfect matching.

Combinatorial expansion says that there exists $\varepsilon>0$ such that for any finite independent set V_0 we have

$$|N(V_0)| \geq (1+\varepsilon)|V_0|.$$

Theorem (Marks, Unger) '15

If G is a bipartite Borel graph which is **combinatorially expansive**, then G has a Baire measurable perfect matching.

In particular if Γ is a nonamenable group, and S is a finite set of generators such that the Cayley graph is bipartite, then any Schreier graph of a free Borel action of Γ has a Baire measurable perfect matching.

Combinatorial expansion says that there exists $\varepsilon>0$ such that for any finite independent set V_0 we have

$$|N(V_0)| \geq (1+\varepsilon)|V_0|.$$

Theorem (Kastner, L.)

For any nonamenable Γ and finite generating set S, and Schreier graph of a free Borel action of Γ admits a Baire measurable perfect matching.

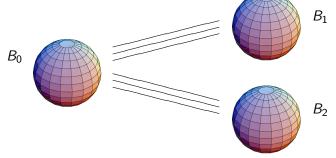
• Let S be a finite set of rotations of the unit ball, closed under inverses.

- Let S be a finite set of rotations of the unit ball, closed under inverses.
- Let G be a graph whose vertex set is three copies of the unit ball B_0 , B_1 , and B_2 .

- Let S be a finite set of rotations of the unit ball, closed under inverses.
- Let G be a graph whose vertex set is three copies of the unit ball B_0 , B_1 , and B_2 .
- For each $x \in B_0$ and $g \in S$ there is an edge between x and the copies of $g \cdot x$ in B_1 and B_2 .

- Let S be a finite set of rotations of the unit ball, closed under inverses.
- Let G be a graph whose vertex set is three copies of the unit ball B_0 , B_1 , and B_2 .

• For each $x \in B_0$ and $g \in S$ there is an edge between x and the copies of $g \cdot x$ in B_1 and B_2 .



ullet A perfect matching in G is an instance of the Banach Tarski paradox.

Lemma (Marks, Unger) '15

If G is a locally finite Borel graph and $h: \mathbb{N} \to \mathbb{N}$ is a function, then there is a Baire measurable decomposition of the vertices

$$G = \bigcup_{n \in \mathbb{N}} A_n$$

such that each A_n is a set of pairwise distances > h(n).

Lemma (Marks, Unger) '15

If G is a locally finite Borel graph and $h: \mathbb{N} \to \mathbb{N}$ is a function, then there is a Baire measurable decomposition of the vertices

$$G=\bigcup_{n\in\mathbb{N}}A_n$$

such that each A_n is a set of pairwise distances > h(n).

 For fast enough growing h, this decomposition can produce Baire measurable toast in a bounded degree Borel graph.

Lemma (Marks, Unger) '15

If G is a locally finite Borel graph and $h: \mathbb{N} \to \mathbb{N}$ is a function, then there is a Baire measurable decomposition of the vertices

$$G = \bigcup_{n \in \mathbb{N}} A_n$$

such that each A_n is a set of pairwise distances > h(n).

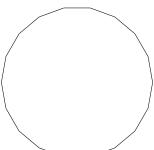
- For fast enough growing h, this decomposition can produce Baire measurable toast in a bounded degree Borel graph.
- If G is a measure preserving graph and h grows fast enough, such a decomposition cannot be done measurably.

• Given a graph labeling problem Π , the most important part of the process of finding Baire measurable solutions to Π is understanding how partial solutions to Π extend to full solutions to Π .

- Given a graph labeling problem Π , the most important part of the process of finding Baire measurable solutions to Π is understanding how partial solutions to Π extend to full solutions to Π .
- It is important to understand when two partial solutions defined on disjoint sets are compatible.

- Given a graph labeling problem Π , the most important part of the process of finding Baire measurable solutions to Π is understanding how partial solutions to Π extend to full solutions to Π .
- It is important to understand when two partial solutions defined on disjoint sets are compatible.
- If e and e' are edges of a graph which each belong to a perfect matching, they may not belong to the same perfect matching, even if they are far apart.

- Given a graph labeling problem Π , the most important part of the process of finding Baire measurable solutions to Π is understanding how partial solutions to Π extend to full solutions to Π .
- It is important to understand when two partial solutions defined on disjoint sets are compatible.
- If e and e' are edges of a graph which each belong to a perfect matching, they may not belong to the same perfect matching, even if they are far apart.



Definition

Given a group Γ , a locally checkable labeling (LCL) problem

$$\Pi = (W, \Lambda, A)$$

consists of a finite set of generators $W \subseteq \Lambda$, a finite set of labels Λ , and a finite set of allowed configurations $A \subseteq \Lambda^W$.

Definition

Given a group Γ , a **locally checkable labeling** (LCL) problem

$$\Pi = (W, \Lambda, A)$$

consists of a finite set of generators $W \subseteq \Lambda$, a finite set of labels Λ , and a finite set of allowed configurations $A \subseteq \Lambda^W$.

Given a free action of Γ on X, a solution to Π is a function $f: X \to \Lambda$ such that for all $x \in X$ we have

$$\{w \mapsto f(w \cdot x)\} \in A$$

Definition

Given a group Γ , a **locally checkable labeling** (LCL) problem

$$\Pi = (W, \Lambda, A)$$

consists of a finite set of generators $W \subseteq \Lambda$, a finite set of labels Λ , and a finite set of allowed configurations $A \subseteq \Lambda^W$.

Given a free action of Γ on X, a solution to Π is a function $f: X \to \Lambda$ such that for all $x \in X$ we have

$$\{w \mapsto f(w \cdot x)\} \in A$$

E.g. matching, k-coloring for fixed k, etc.

BOREL(Γ) is the set of LCLs Π on Γ such that any free Borel action of Γ on a Polish space X admits a Borel Π -solution

BOREL(Γ) is the set of LCLs Π on Γ such that any free Borel action of Γ on a Polish space X admits a Borel Π -solution

MEAS(Γ) is the set of LCLs Π on Γ such that any free Borel action of Γ on a Polish space X equipped with a Borel probability measure μ admits a Borel Π -solution μ -a.e.

BOREL(Γ) is the set of LCLs Π on Γ such that any free Borel action of Γ on a Polish space X admits a Borel Π -solution

MEAS(Γ) is the set of LCLs Π on Γ such that any free Borel action of Γ on a Polish space X equipped with a Borel probability measure μ admits a Borel Π -solution μ -a.e.

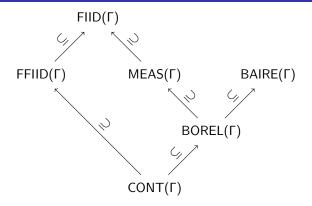
BAIRE(Γ) is the set of LCLs Π on Γ such that any free Borel action of Γ on a Polish space X admits a Borel Π -solution on a comeager set

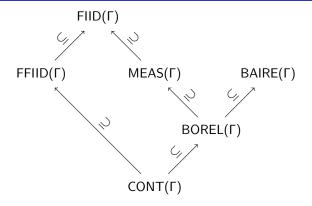
BOREL(Γ) is the set of LCLs Π on Γ such that any free Borel action of Γ on a Polish space X admits a Borel Π -solution

MEAS(Γ) is the set of LCLs Π on Γ such that any free Borel action of Γ on a Polish space X equipped with a Borel probability measure μ admits a Borel Π -solution μ -a.e.

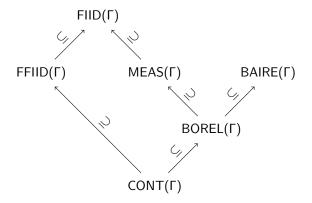
BAIRE(Γ) is the set of LCLs Π on Γ such that any free Borel action of Γ on a Polish space X admits a Borel Π -solution on a comeager set

We can also define classes $FIID(\Gamma)$, $FFIID(\Gamma)$, $CONT(\Gamma)$, etc.





Grebík and Rozhoň showed that these all coincide for $\Gamma=\mathbb{Z}$



Grebík and Rozhoň showed that these all coincide for $\Gamma=\mathbb{Z}$

Brandt, Chang, Grebík, Grunau, Rozhoň, and Vidnyánszky showed

$$\mathsf{MEAS}(\mathbb{F}_n)\subseteq\mathsf{BAIRE}(\mathbb{F}_n)$$

The Case of $\Gamma = \mathbb{Z}^n$

The Case of $\Gamma = \mathbb{Z}^{n'}$

Fix a free Borel action of $\mathbb{Z}^n \curvearrowright X$ and consider the standard generators.

The Case of $\Gamma = \mathbb{Z}^n$

Fix a free Borel action of $\mathbb{Z}^n \curvearrowright X$ and consider the standard generators.

Definition

For $q \in \mathbb{N}$ a q-toast is a Borel family $\mathcal{T} \subseteq [X]^{<\infty}$ of finite sets such that

• for all $K, L \in \mathcal{T}$

$$K \cap L = \emptyset$$
 or $K \subseteq L$ or $L \subseteq K$

• for distinct $K, L \in \mathcal{T}$

$$\operatorname{dist}(\partial K, \partial L) > q$$
.

We say \mathcal{T} is **complete** if $\bigcup \mathcal{T} = X$.

The Case of $\Gamma = \mathbb{Z}^n$

Fix a free Borel action of $\mathbb{Z}^n \curvearrowright X$ and consider the standard generators.

Definition

For $q \in \mathbb{N}$ a q-toast is a Borel family $\mathcal{T} \subseteq [X]^{<\infty}$ of finite sets such that

• for all $K, L \in \mathcal{T}$

$$K \cap L = \emptyset$$
 or $K \subseteq L$ or $L \subseteq K$

• for distinct $K, L \in \mathcal{T}$

$$\operatorname{dist}(\partial K, \partial L) > q$$
.

We say \mathcal{T} is **complete** if $\bigcup \mathcal{T} = X$.

Theorem (Gao, Jackson, Krohne, Seward)

Free Borel actions of \mathbb{Z}^n admit complete q-toast.

Rectangular Toast

Rectangular Toast

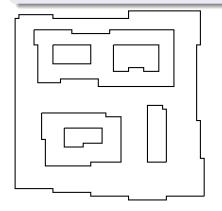
Theorem 1

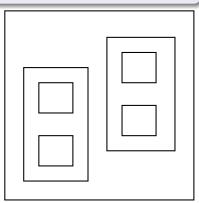
For any free Borel action of $\mathbb{Z}^n \curvearrowright X$ and any Borel probability measure μ , X admits a q-toast \mathcal{T} with all pieces squares and $\mu(\bigcup \mathcal{T}) = 1$.

Rectangular Toast

Theorem

For any free Borel action of $\mathbb{Z}^n \curvearrowright X$ and any Borel probability measure μ , X admits a q-toast \mathcal{T} with all pieces squares and $\mu(\bigcup \mathcal{T}) = 1$.





Fix $\mathbb{Z}^n \curvearrowright (X, \mu)$ and q > 0

Fix
$$\mathbb{Z}^n \curvearrowright (X, \mu)$$
 and $q > 0$

Step 1: For any $\varepsilon > 0$ and r > 0, there is a Borel equivalence relation with finite classes such that

$$\mu\{x \in X | B_r(x) \subseteq [x]_F\} > 1 - \varepsilon.$$

Fix $\mathbb{Z}^n \curvearrowright (X, \mu)$ and q > 0

Step 1: For any $\varepsilon > 0$ and r > 0, there is a Borel equivalence relation with finite classes such that

$$\mu\{x \in X | B_r(x) \subseteq [x]_F\} > 1 - \varepsilon.$$

Step 2: For any $\varepsilon > 0$ there exists $N = N(\varepsilon)$ and a Borel collection $\mathcal{D} \subseteq [X]^{<\infty}$ of q-separated squares with side length N such that

$$\mu(\bigcup \mathcal{D}) > 1 - \varepsilon.$$

Fix $\mathbb{Z}^n \curvearrowright (X, \mu)$ and q > 0

Step 1: For any $\varepsilon > 0$ and r > 0, there is a Borel equivalence relation with finite classes such that

$$\mu\{x \in X | B_r(x) \subseteq [x]_F\} > 1 - \varepsilon.$$

Step 2: For any $\varepsilon > 0$ there exists $N = N(\varepsilon)$ and a Borel collection $\mathcal{D} \subseteq [X]^{<\infty}$ of q-separated squares with side length N such that

$$\mu(\bigcup \mathcal{D}) > 1 - \varepsilon.$$

Step 3: Repeat step 2 at larger scales and use Borel-Cantelli.

Given a rectangular toast, we can 2-color the vertices of the graph except for those on the boundaries of the toast pieces.

Given a rectangular toast, we can 2-color the vertices of the graph except for those on the boundaries of the toast pieces.

We encode this partial 2-coloring into an LCL: $\Pi = \Pi_{2\text{-col or rect. toast}}$

Given a rectangular toast, we can 2-color the vertices of the graph except for those on the boundaries of the toast pieces.

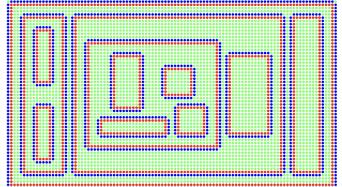
We encode this partial 2-coloring into an LCL: $\Pi = \Pi_{2\text{-col or rect. toast}}$

 $\Lambda = \{\mathsf{black}, \mathsf{white}, \mathsf{inner}\ \mathsf{barrier}, \mathsf{outer}\ \mathsf{barrier}\}$

Given a rectangular toast, we can 2-color the vertices of the graph except for those on the boundaries of the toast pieces.

We encode this partial 2-coloring into an LCL: $\Pi = \Pi_{2\text{-col or rect. toast}}$

 $\Lambda = \{ black, white, inner barrier, outer barrier \}$



Theorem (Berlow, Bernshteyn, L., Weilacher)

Let X be compact and $\mathbb{Z}^2 \curvearrowright X$ a free and continuous action, such that each generator e_1, e_2 has dense orbits. If there is a Baire measurable solution to Π , then there is a Baire measurable 2-coloring.

Theorem (Berlow, Bernshteyn, L., Weilacher)

Let X be compact and $\mathbb{Z}^2 \curvearrowright X$ a free and continuous action, such that each generator e_1, e_2 has dense orbits. If there is a Baire measurable solution to Π , then there is a Baire measurable 2-coloring.

Theorem (Berlow, Bernshteyn, L., Weilacher)

Let X be compact and $\mathbb{Z}^2 \curvearrowright X$ a free and continuous action, such that each generator e_1, e_2 has dense orbits. If there is a Baire measurable solution to Π , then there is a Baire measurable 2-coloring.

Proof

• If f is a Π -solution, let $Q = f^{-1}\{black, white\}$.

Theorem (Berlow, Bernshteyn, L., Weilacher)

Let X be compact and $\mathbb{Z}^2 \curvearrowright X$ a free and continuous action, such that each generator e_1, e_2 has dense orbits. If there is a Baire measurable solution to Π , then there is a Baire measurable 2-coloring.

- If f is a Π -solution, let $Q = f^{-1}\{black, white\}$.
- We have $Q \cup e_1 Q \cup e_2 Q \cup e_1^{-1} Q \cup e_2^{-1} Q = X$, so Q is non-meager.

Theorem (Berlow, Bernshteyn, L., Weilacher)

Let X be compact and $\mathbb{Z}^2 \curvearrowright X$ a free and continuous action, such that each generator e_1, e_2 has dense orbits. If there is a Baire measurable solution to Π , then there is a Baire measurable 2-coloring.

- If f is a Π -solution, let $Q = f^{-1}\{black, white\}$.
- We have $Q \cup e_1Q \cup e_2Q \cup e_1^{-1}Q \cup e_2^{-1}Q = X$, so Q is non-meager.
- Also Q is comeager in a basic open set U, and finitely many translates of U cover X, by compactness and the density of orbits.

Theorem (Berlow, Bernshteyn, L., Weilacher)

Let X be compact and $\mathbb{Z}^2 \curvearrowright X$ a free and continuous action, such that each generator e_1, e_2 has dense orbits. If there is a Baire measurable solution to Π , then there is a Baire measurable 2-coloring.

- If f is a Π -solution, let $Q = f^{-1}\{black, white\}$.
- We have $Q \cup e_1Q \cup e_2Q \cup e_1^{-1}Q \cup e_2^{-1}Q = X$, so Q is non-meager.
- Also Q is comeager in a basic open set U, and finitely many translates of U cover X, by compactness and the density of orbits.
- So finitely many translates of Q by powers of e₁ cover a comeager subset of X.

Theorem (Berlow, Bernshteyn, L., Weilacher)

Let X be compact and $\mathbb{Z}^2 \curvearrowright X$ a free and continuous action, such that each generator e_1, e_2 has dense orbits. If there is a Baire measurable solution to Π , then there is a Baire measurable 2-coloring.

- If f is a Π -solution, let $Q = f^{-1}\{black, white\}$.
- We have $Q \cup e_1 Q \cup e_2 Q \cup e_1^{-1} Q \cup e_2^{-1} Q = X$, so Q is non-meager.
- Also Q is comeager in a basic open set U, and finitely many translates of U cover X, by compactness and the density of orbits.
- So finitely many translates of Q by powers of e₁ cover a comeager subset of X.
- This places an upper bound on the sidelengths of the boundary rectangles in the solution to Π.

Descriptive Complexity of Π

Descriptive Complexity of Π

Theorem (Berlow, Bernshteyn, L., Weilacher)

Fix $n \geq 2$. Let $\Pi = \Pi_{2\text{-col or rect. toast}}$

- $\Pi \in \mathsf{MEAS}(\mathbb{Z}^n)$
- $\Pi \notin \mathsf{BAIRE}(\mathbb{Z}^n)$
- Π admits Baire measurable solutions on $F(\{\pm e_i\}, X)$
- $\Pi \notin \mathsf{FFIID}(\mathbb{Z}^n)$
- $\Pi \in \mathsf{COMPUTABLE}(\mathbb{Z}^n)$

Descriptive Complexity of Π

Theorem (Berlow, Bernshteyn, L., Weilacher)

Fix $n \geq 2$. Let $\Pi = \Pi_{2\text{-col or rect. toast}}$

- $\Pi \in \mathsf{MEAS}(\mathbb{Z}^n)$
- $\Pi \notin \mathsf{BAIRE}(\mathbb{Z}^n)$
- Π admits Baire measurable solutions on $F(\{\pm e_i\}, X)$
- $\Pi \notin \mathsf{FFIID}(\mathbb{Z}^n)$
- $\Pi \in \mathsf{COMPUTABLE}(\mathbb{Z}^n)$

Theorem (Berlow, Bernshteyn, L., Weilacher)

Fix $n \ge 2$. There is an LCL Π' on \mathbb{Z}^n such that

- $\Pi \notin \mathsf{FIID}(\mathbb{Z}^n)$
- Π admits Baire measurable solutions on $F(\{\pm e_i\}, X)$
- $\Pi \in \mathsf{COMPUTABLE}(\mathbb{Z}^n)$

By the Marks-Unger lemma, any locally finite Borel graph G can be decomposed into sparse sets on a comeager invariant set.

By the Marks-Unger lemma, any locally finite Borel graph G can be decomposed into sparse sets on a comeager invariant set.

But if G is the Schreier graph of a free continuous action of a group on a compact Polish space with dense orbits, then any Borel set which meets comeagerly many orbits must do so with "bounded gaps".

By the Marks-Unger lemma, any locally finite Borel graph G can be decomposed into sparse sets on a comeager invariant set.

But if G is the Schreier graph of a free continuous action of a group on a compact Polish space with dense orbits, then any Borel set which meets comeagerly many orbits must do so with "bounded gaps".

These positive and negative results together give a fairly complete description of BAIRE(\mathbb{F}_n) and in general which LCLs can be solved Baire measurably on trees.

By the Marks-Unger lemma, any locally finite Borel graph G can be decomposed into sparse sets on a comeager invariant set.

But if G is the Schreier graph of a free continuous action of a group on a compact Polish space with dense orbits, then any Borel set which meets comeagerly many orbits must do so with "bounded gaps".

These positive and negative results together give a fairly complete description of BAIRE(\mathbb{F}_n) and in general which LCLs can be solved Baire measurably on trees.

Problem

Can we describe BAIRE(\mathbb{Z}^n)? Is it computable?

Thank You