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COMMON FRAMEWORK FOR INVARIANT DST

Let X be a Polish space.
Let £ C X x X be a X} equivalence relation on X.

Definition
Let F/, F' be equivalence relations on the Polish spaces X, Y respectively.
We say that:

m I is Borel reducible to F' (in symbols & <p F) if and only if
there exists a Borel map f: X — Y such that

tEy <= f(x)F f(y).

m F~p Fifandonlyif E <p Fand F <p FE.
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USEFUL EXAMPLES

Example (Orbit equivalence relations)

Let G be a Polish group. Let G ™~ X be a continuous action. Denote by
Eé the orbit equivalence relation arising from the action:

tEEy < JgeGg-z=1).

Note Eé isa 1.

A\

A special case: the isomorphism relation

For a countable first-order language £ we can define the Polish space
of countable enumerated L-structures whose universe is N.
For M, N we have

M N = g€ Sx(g- M=N),

Here Soo = {f: N = N} acts on X by permuting the universe set.
su
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IDEALISTIC EQUIVALENCE RELATIONS

Definition (Kechris—Louveau’97; apres Kechris ’92)

An equivalence relation E on a Polish space X is idealistic if there is a
map assigning to each C' € X/FE a nontrivial o-ideal I on C such that:

m C ¢l
m [ois ccc
m C' — Ic is Borel-on-Borel, i.e., for each Borel A C X x X, the set

{:E e X | [x]EﬂAz € I[f]E}

is Borel.

This is a technical definition that is better motivated by examples.
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Example

m Let G be Polish and locally compact with Haar measure 1 and
E = Eé( for some continuous action G ~ X.
For each orbit C' = MEé{ in X/EZ consider the function
Jo: G — [x]Eé

gr—g-x
and let p, the image of 1 under f. Then define
Aelo <= py(A)=0.

m Let £ = Eé for some continuous action G ~ X.Forany z € X,
define the corresponding ideal I}, by

z|p

Ac Iy, < {9:9-2¢c A} € MGR(G).
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IDEALISTIC EQUIVALENCE RELATIONS (COUNTEREXAMPLE)

For X = (2Y)N and z,y € X define
z By < Im¥n > m(z(n) =y(n)).

Note that F; is hypersmooth; i.e., increasing union of smooth
equivalence relations.

Theorem (Kechris-Louveau ’97)

Let E be a non-smooth, hypersmooth Borel equivalence relation. Then
exactly one of the following holds:

1. E ~p Ey,
2. F ~p E;.
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Theorem (Kechris—Louveau’97)
If E is Borel and idealistic, then F, £p F.

F)1 is not idealistic. \

Theorem (Kechris—Louveau’97)

Let E be an orbit equivalence relation, then £y £ E.

This is commonly used to prove that certain equivalence relations are
not classifiable by orbit equivalence relations.
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HOPING FOR A DICHOTOMY

Question (Kechris—Louveau ’97)
If £ is a Borel equivalence relation, is it true that either
1. B1 <p E, or

2. Fisidealistic?

E; dichotomy conjecture (Hjorth—Kechris *97)
Yes.
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INTERMEZZO: CLASS-WISE BOREL EMBEDDINGS

Definition

Let F/, F' be equivalence relations on the Polish spaces X, Y respectively.
We say that:

m I is class-wise Borel isomorphic to F' (in sybmols £ ~.p F) if
there is a bijection #: X/E — Y/F such that both § and =1 have
Borel lifting.

m F is class-wise Borel embeddable to F' (in sybmols £ C.p F) if
there is an F-saturated Borel A C Y such that £ ~.p (F' | A).

While E <p F and F' <p FE does not imply E =5 F, we have

EECBFandFECBE ~— FEF=.pF.



For (z1,v1), (72,12) € R2 define
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For (x1,91), (2,%2) € R? define
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INTERMEZZO (CONT’D)

For (x1,91), (2,%2) € R? define

(71,y1) E (22,92) — T = T2
Clearly ¥ ~.p idg but E 2p idgr.

Moreover,

Theorem (Gao ’01)

=GRAPHS ZcB =TREE-

So =GRAPHS ~B =TREE but =GRAPHS %cB =TREE.
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Theorem (Hjorth ’05)

There is a Borel equivalence relation R such that:
1. R <p F for some countable Borel equivalence relation F

2. R is not Borel bi-reducible with any countable Borel equivalence
relation.

Therefore, "essentially countable" = "Borel bi-reducible to countable".

Theorem (Kechris—MacDonald ’16)

If E is an idealistic equivalence relation and F' is a Borel equivalence
relation, then E <g F <— FE C_.g F.

m Hjorth’s R is not idealistic and Fy dichotomy is false.

et i s </ations is not closed downward




«SO THE LOGICIANS ENTERED THE
PICTURE IN THEIR USUAL STYLE, AS
SPOILERS.»

(MOSCHOVAKIS)
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Theorem (Becker 2001)

Assume 31 determinacy. There is an equivalence relation Eg on a Polish
space X such that

1. Egis »! ;

2. Ep-classes are Borel;

3. Ep is idealistic;

4. There isX no Polish group G acting on X continuously such that
E=FE¢.

This answered a question of Kechris, who previously asked whether
(1)-(3) implies —(4).
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BECKER’S MANUSCRIPT

m Becker’s theorem appeared is some
handwritten notes, circulated among
experts in early 2000s.

m Solecki gently provided us a scanned
copy. The file was corrupted.

m We asked Kechris, who had the same
version as Solecki’s.

m We asked Becker, who kindly replied
to our message and sent us a fully
readable version.




ORBIT VS. IDEALISTIC (REMASTERED)

Theorem (Motto Ros-C. 2025; aprés Becker 2001)

Assume X1 determinacy. There is an equivalence relation Ey such that:

1.

2.
3.
4.

Ep is 31;

Eg-classes are Borel;

B is idealistic;

Eg is not class-wise Borel embeddable into any orbit
equivalence relation.




ORBIT VS. IDEALISTIC (REMASTERED)

Theorem (Motto Ros-C. 2025; aprés Becker 2001)

Assume X1 determinacy. There is an equivalence relation Ey such that:
1. B is 2% g
2. Eg-classes are Borel;
3. Eg is idealistic;
4. Ep is not class-wise Borel embeddable into any orbit
equivalence relation.

Moreover, let Z be the class of £} equivalence relations with (1)(4’).

Theorem (Motto Ros-C. 2025)

Assume 21 determinacy. The poset (P(w)/ fin, C) embeds into (Z,C.p).
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ABELIAN pP-GROUPS

Fix a prime p.

Definition
An abelian group G is a p-group if every nontrivial element has order p™

for some n € N.

m Cpn =Z/p"Z
™ Cp@0p2@"'@cp”@"‘
m The quasi-cyclic p-group Z(p>°) = Z[1/p]/Z




P-GROUPS AND ULM CLASSIFICATION

Any countable abelian p-group G decomposes as
G = D(G) @ R(G)
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7 times




P-GROUPS AND ULM CLASSIFICATION

Any countable abelian p-group G decomposes as
G = D(G) @ R(G)

The divisible part D(G) = Z(p™®) @ --- @ Z(p*°) forr = 0,1, ... ,w.

~
7 times

The reduced part R(G) is completely classified by the Ulm invariant,
which is a sequence in (N U {oo})<“! that completely encodes the
isomorphism type of R(G).
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DEFINITION OF Ep

Let £' = {+} be the language of Abelian groups. Expand £’ to L by
adding a constant ag, aj, . . . for each element of the infinite rank

quasi-cyclic p-group Z(p™)“.
Let 7”7 be the £'-theory of abelian p-groups and let

T =T UDiag(Z(p™)~).

For A, B € X7 define
(A,B) € Ep = H(A) =, H(B),

where H(A) and H (B) are the £'-reducts of A and B, respectively.




DEFINITION OF Eg (CONT'D)

Note that if

A=R(A) & Z(p™)“ & Z(p>°) & Z(p™)
unnamed
B =R(A) ® Z(p™)” & Z(p™) & Z(p™) & Z(p>),

unnamed

then A %, B but (A, B) € Ejp.
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A FEW COMMENTS ON THE PROOF

Theorem (Becker 2001)
3. L isidealistic.

Definition

Suppose that £ C F' are analytic equivalence relations on X. If
0: X — X is a homomorphism from F' to E such that 0(z) F x for all
2 € X, then we say that 0 selects an E-class within each F'-class.




A FEW COMMENTS ON THE PROOF (CONT’D)

Proposition

Let E be an orbit equivalence relation induced by a Borel action G ~ X of
a Polish group G on a Polish space E. Let F' O E be any equivalence
relation on X.




A FEW COMMENTS ON THE PROOF (CONT’D)

Proposition

Let E be an orbit equivalence relation induced by a Borel action G ~ X of
a Polish group G on a Polish space E. Let F' O E be any equivalence
relation on X. If there is a Borel map 6: X — X selecting an E-class
within every F'-class, then F' is idealistic.

In our case let

(A =ABZP®)D - L) D ---

w unnamed copies
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=/ by definition.




OPEN QUESTIONS

Question (Becker)

Is Becker’s equivalence relation Eg Borel bi-reducible with an orbit
equivalence relation? It is not hard to see that Ep is Borel reducible to
=/ by definition.

Question (Becker)

Can we remove the hypothesis of $1-determinacy?




OPEN QUESTIONS

Question (Becker)

Is Becker’s equivalence relation Eg Borel bi-reducible with an orbit
equivalence relation? It is not hard to see that Ep is Borel reducible to
=/ by definition.

Question (Becker)

Can we remove the hypothesis of X1-determinacy?

New E; Conjecture

Let ' be a Borel equivalence relation. Then either £y <p E or E'is
Borel reducible to an idealistic (or orbit) equivalence relation.
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MORE ABOUT ORBIT VS. IDEALISTIC

Is every idealistic equivalence relation on a Polish space Borel
bi-reducible to an orbit equivalence relation?

Proposition

Let E be an idealistic equivalence relation, and suppose that E <p F' for
some Borel orbit equivalence relation F'. Then E is classwise Borel
isomorphic to (and hence Borel bireducible with) a Borel orbit
equivalence relation.
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