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Overview

Classical Descriptive set theory: definable subsets of Polish spaces (R,
2ω , ωω , etc...)

Figure: Kechris’ book.

Modern Descriptive set theory: Study of Polish spaces with
additional (definable) structure:

Polish groups.
Borel combinatorics: Borel graphs.
Invariant descriptive set theory: definable quotients of Polish
spaces.
Borel dynamics.
. . .
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Common framework for Invariant DST

Let X be a Polish space.

Let E ⊆ X ×X be a Σ1
1 equivalence relation on X .

Definition
Let E,F be equivalence relations on the Polish spaces X,Y respectively.
We say that:

E is Borel reducible to F (in symbols E ≤B F ) if and only if
there exists a Borel map f : X → Y such that

x E y ⇐⇒ f(x) F f(y).

E ∼B F if and only if E ≤B F and F ≤B E.
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Useful examples

Example (Orbit equivalence relations)
Let G be a Polish group. Let G ↷ X be a continuous action.

Denote by
EX

G the orbit equivalence relation arising from the action:

x EX
G y ⇐⇒ ∃g ∈ G(g · x = y).

Note EX
G is a Σ1

1.

A special case: the isomorphism relation
For a countable first-order language L we can define the Polish space
of countable enumerated L-structures whose universe is N.
ForM,N we have

M ∼=L N ⇐⇒ ∃g ∈ S∞ (g · M = N ),

Here S∞ = {f : N 1−1−→
su

N} acts on XL by permuting the universe set.
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The analytic Zoo

Figure: Courtesy of Matt Foreman.
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Idealistic equivalence relations
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Idealistic equivalence relations

Definition (Kechris–Louveau’97; après Kechris ’92)
An equivalence relation E on a Polish space X is idealistic if there is a
map assigning to each C ∈ X/E a nontrivial σ-ideal IC on C such that:

C /∈ IC ;

IC is ccc;

C 7→ IC is Borel-on-Borel, i.e., for each Borel A ⊆ X ×X , the set

{x ∈ X | [x]E ∩Ax ∈ I[x]E}.

is Borel.

This is a technical definition that is better motivated by examples.
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Idealistic Equivalence relations (examples)

Example
Let G be Polish and locally compact with Haar measure µ and
E = EX

G for some continuous action G ↷ X .

For each orbit C = [x]EX
G
in X/EX

G consider the function

fx : G → [x]EX
G

g 7→ g · x

and let µx the image of µ under f . Then define

A ∈ IC ⇐⇒ µx(A) = 0.

Let E = EX
G for some continuous action G ↷ X .For any x ∈ X ,

define the corresponding ideal I[x]E by

A ∈ I[x]E ⇐⇒ {g : g · x ∈ A} ∈ MGR(G).
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Idealistic equivalence relations (counterexample)

For X = (2N)N and x, y ∈ X define

x E1 y ⇐⇒ ∃m∀n ≥ m (x(n) = y(n)).

Note that E1 is hypersmooth; i.e., increasing union of smooth
equivalence relations.

Theorem (Kechris-Louveau ’97)
Let E be a non-smooth, hypersmooth Borel equivalence relation. Then
exactly one of the following holds:

1. E ∼B E0,

2. E ∼B E1.
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Counterexample

Theorem (Kechris–Louveau’97)
If E is Borel and idealistic, then E1 ̸≤B E.

Fact
E1 is not idealistic.

Theorem (Kechris–Louveau’97)
Let E be an orbit equivalence relation, then E1 ̸≤B E.

This is commonly used to prove that certain equivalence relations are
not classifiable by orbit equivalence relations.
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Hoping for a dichotomy

Question (Kechris–Louveau ’97)
If E is a Borel equivalence relation, is it true that either

1. E1 ≤B E, or

2. E is idealistic?

E1 dichotomy conjecture (Hjorth–Kechris ’97)
Yes.
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Intermezzo
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Intermezzo: Class-wise Borel embeddings

Definition
Let E,F be equivalence relations on the Polish spaces X,Y respectively.
We say that:

E is class-wise Borel isomorphic to F (in sybmols E ≃cB F ) if
there is a bijection θ : X/E → Y/F such that both θ and θ−1 have
Borel lifting.

E is class-wise Borel embeddable to F (in sybmols E ⊑cB F ) if
there is an F -saturated Borel A ⊆ Y such that E ≃cB (F ↾ A).

While E ≤B F and F ≤B E does not imply E ∼=B F , we have

E ⊑cB F and F ⊑cB E ⇐⇒ E ∼=cB F.
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Intermezzo (cont’d)

For (x1, y1), (x2, y2) ∈ R2 define

(x1, y1) E (x2, y2) ⇐⇒ x1 = x2.

Clearly E ≃cB idR but E ̸∼=B idR.

Moreover,

Theorem (Gao ’01)
∼=GRAPHS ̸⊑cB

∼=TREE.

So ∼=GRAPHS ∼B
∼=TREE but ∼=GRAPHS ̸≃cB

∼=TREE.
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End Intermezzo
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A counterexample?

Theorem (Hjorth ’05)
There is a Borel equivalence relation R such that:

1. R ≤B F for some countable Borel equivalence relation F

2. R is not Borel bi-reducible with any countable Borel equivalence
relation.

Therefore, "essentially countable" = "Borel bi-reducible to countable".

Theorem (Kechris–MacDonald ’16)
If E is an idealistic equivalence relation and F is a Borel equivalence
relation, then E ≤B F ⇐⇒ E ⊑cB F.

Corollary
Hjorth’s R is not idealistic and E1 dichotomy is false.
The class of idealistic equivalence relations is not closed downward.
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«So the logicians entered the
picture in their usual style, as

spoilers.»
(Moschovakis)
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Orbit vs. Idealistic

Theorem (Becker 2001)

Assume Σ1
1 determinacy. There is an equivalence relation EB on a Polish

space X such that

1. EB is Σ1
1;

2. EB-classes are Borel;

3. EB is idealistic;

4. There is no Polish group G acting on X continuously such that
E = EX

G.

This answered a question of Kechris, who previously asked whether
(1)–(3) implies ¬(4).
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Becker’s manuscript

Becker’s theorem appeared is some
handwritten notes, circulated among
experts in early 2000s.

Solecki gently provided us a scanned
copy. The file was corrupted.

We asked Kechris, who had the same
version as Solecki’s.

We asked Becker, who kindly replied
to our message and sent us a fully
readable version.

15 25
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Orbit vs. Idealistic (remastered)

Theorem (Motto Ros-C. 2025; après Becker 2001)

Assume Σ1
1 determinacy. There is an equivalence relation EB such that:

1. EB is Σ1
1;

2. EB-classes are Borel;

3. EB is idealistic;

4’. EB is not class-wise Borel embeddable into any orbit
equivalence relation.

Moreover, let I be the class of Σ1
1 equivalence relations with (1)–(4’).

Theorem (Motto Ros-C. 2025)

Assume Σ1
1 determinacy. The poset (P(ω)/fin,⊆) embeds into (I,⊑cB).

16 25



Orbit vs. Idealistic (remastered)

Theorem (Motto Ros-C. 2025; après Becker 2001)

Assume Σ1
1 determinacy. There is an equivalence relation EB such that:

1. EB is Σ1
1;

2. EB-classes are Borel;

3. EB is idealistic;

4’. EB is not class-wise Borel embeddable into any orbit
equivalence relation.

Moreover, let I be the class of Σ1
1 equivalence relations with (1)–(4’).

Theorem (Motto Ros-C. 2025)

Assume Σ1
1 determinacy. The poset (P(ω)/fin,⊆) embeds into (I,⊑cB).

16 25



Abelian p-groups

Fix a prime p.

Definition
An abelian group G is a p-group if every nontrivial element has order pn

for some n ∈ N.

Examples

Cpn = Z/pnZ
Cp ⊕ Cp2 ⊕ · · · ⊕ Cpn ⊕ · · ·
The quasi-cyclic p-group Z(p∞) = Z[1/p]/Z
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p-groups and Ulm classification

Any countable abelian p-group G decomposes as

G = D(G)⊕R(G)

The divisible part D(G) = Z(p∞)⊕ · · · ⊕ Z(p∞)︸ ︷︷ ︸
r times

for r = 0, 1, . . . , ω.

The reduced part R(G) is completely classified by the Ulm invariant,
which is a sequence in (N ∪ {∞})<ω1 that completely encodes the
isomorphism type of R(G).
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Definition of EB

Let L′ = {+} be the language of Abelian groups.

Expand L′ to L by
adding a constant a0, a1, . . . for each element of the infinite rank
quasi-cyclic p-group Z(p∞)ω .

Let T ′ be the L′-theory of abelian p-groups and let

T = T ′ ∪Diag(Z(p∞)ω).

For A,B ∈ XT define

(A,B) ∈ EB ⇐⇒ H(A) ∼=L′ H(B),

where H(A) and H(B) are the L′-reducts of A and B, respectively.
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Definition of EB (cont’d)

Note that if

A =R(A)⊕ Z(p∞)ω ⊕ Z(p∞)⊕ Z(p∞)︸ ︷︷ ︸
unnamed

B =R(A)⊕ Z(p∞)ω ⊕ Z(p∞)⊕ Z(p∞)⊕ Z(p∞)︸ ︷︷ ︸
unnamed

,

then A ≁=L B but (A,B) ∈ EB.
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A few comments on the proof

Theorem (Becker 2001)
3. EB is idealistic.

Definition

Suppose that E ⊆ F are analytic equivalence relations on X . If
θ : X → X is a homomorphism from F to E such that θ(x) F x for all
x ∈ X , then we say that θ selects an E-class within each F -class.
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A few comments on the proof (cont’d)

Proposition

Let E be an orbit equivalence relation induced by a Borel action G ↷ X of
a Polish group G on a Polish space E. Let F ⊇ E be any equivalence
relation on X .

If there is a Borel map θ : X → X selecting an E-class
within every F -class, then F is idealistic.

In our case let

θ(A) = A⊕ Z(p∞)⊕ · · · ⊕ Z(p∞)⊕ · · ·︸ ︷︷ ︸
ω unnamed copies
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Open questions

Question (Becker)
Is Becker’s equivalence relation EB Borel bi-reducible with an orbit
equivalence relation? It is not hard to see that EB is Borel reducible to
∼=L′ by definition.

Question (Becker)

Can we remove the hypothesis of Σ1
1-determinacy?

New E1 Conjecture
Let E be a Borel equivalence relation. Then either E1 ≤B E or E is
Borel reducible to an idealistic (or orbit) equivalence relation.
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More about orbit vs. idealistic

Question
Is every idealistic equivalence relation on a Polish space Borel
bi-reducible to an orbit equivalence relation?

Proposition
Let E be an idealistic equivalence relation, and suppose that E ≤B F for
some Borel orbit equivalence relation F . Then E is classwise Borel
isomorphic to (and hence Borel bireducible with) a Borel orbit
equivalence relation.
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