

THE STATE UNIVERSITY
OF NEW JERSEY

IDEALISTIC EQUIVALENCE RELATIONS REMASTERED

JOINT WITH L. MOTTO ROS (TORINO)

FILIPPO CALDERONI

DEPARTMENT OF MATHEMATICS
RUTGERS UNIVERSITY

CALTECH LOGIC SEMINAR
JANUARY 14 (WORLD LOGIC DAY), 2026

ACKNOWLEDGEMENTS

This research was partially supported by the National Science Foundation through the grant DMS – 2348819.

Classical Descriptive set theory: definable subsets of Polish spaces (\mathbb{R} , 2^ω , ω^ω , etc...)

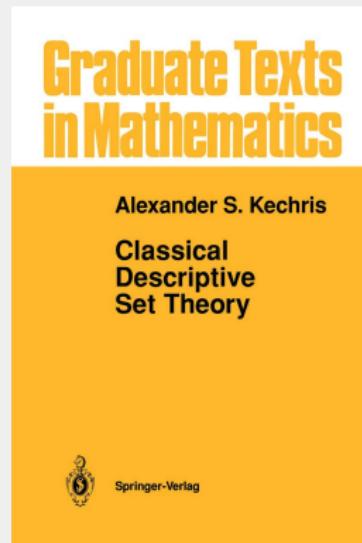


Figure: Kechris' book.

Classical Descriptive set theory: definable subsets of Polish spaces (\mathbb{R} , 2^ω , ω^ω , etc...)

Modern Descriptive set theory: Study of Polish spaces with additional (definable) structure:

- Polish groups.

Classical Descriptive set theory: definable subsets of Polish spaces (\mathbb{R} , 2^ω , ω^ω , etc...)

Modern Descriptive set theory: Study of Polish spaces with additional (definable) structure:

- Polish groups.
- Borel combinatorics: Borel graphs.

Classical Descriptive set theory: definable subsets of Polish spaces (\mathbb{R} , 2^ω , ω^ω , etc...)

Modern Descriptive set theory: Study of Polish spaces with additional (definable) structure:

- Polish groups.
- Borel combinatorics: Borel graphs.
- Invariant descriptive set theory: definable quotients of Polish spaces.

Classical Descriptive set theory: definable subsets of Polish spaces (\mathbb{R} , 2^ω , ω^ω , etc...)

Modern Descriptive set theory: Study of Polish spaces with additional (definable) structure:

- Polish groups.
- Borel combinatorics: Borel graphs.
- Invariant descriptive set theory: definable quotients of Polish spaces.
- Borel dynamics.

Classical Descriptive set theory: definable subsets of Polish spaces (\mathbb{R} , 2^ω , ω^ω , etc...)

Modern Descriptive set theory: Study of Polish spaces with additional (definable) structure:

- Polish groups.
- Borel combinatorics: Borel graphs.
- Invariant descriptive set theory: definable quotients of Polish spaces.
- Borel dynamics.
- ...

Classical Descriptive set theory: definable subsets of Polish spaces (\mathbb{R} , 2^ω , ω^ω , etc...)

Modern Descriptive set theory: Study of Polish spaces with additional (definable) structure:

- Polish groups.
- Borel combinatorics: Borel graphs.
- Invariant descriptive set theory: definable quotients of Polish spaces.
- Borel dynamics.
- ...

COMMON FRAMEWORK FOR INVARIANT DST

Let X be a Polish space.

COMMON FRAMEWORK FOR INVARIANT DST

Let X be a Polish space.

Let $E \subseteq X \times X$ be a Σ_1^1 equivalence relation on X .

COMMON FRAMEWORK FOR INVARIANT DST

Let X be a Polish space.

Let $E \subseteq X \times X$ be a Σ_1^1 equivalence relation on X .

Definition

Let E, F be equivalence relations on the Polish spaces X, Y respectively.

COMMON FRAMEWORK FOR INVARIANT DST

Let X be a Polish space.

Let $E \subseteq X \times X$ be a Σ_1^1 equivalence relation on X .

Definition

Let E, F be equivalence relations on the Polish spaces X, Y respectively.

We say that:

- E is **Borel reducible** to F (in symbols $E \leq_B F$) if and only if there exists a Borel map $f: X \rightarrow Y$ such that

$$x E y \iff f(x) F f(y).$$

COMMON FRAMEWORK FOR INVARIANT DST

Let X be a Polish space.

Let $E \subseteq X \times X$ be a Σ_1^1 equivalence relation on X .

Definition

Let E, F be equivalence relations on the Polish spaces X, Y respectively.

We say that:

- E is **Borel reducible** to F (in symbols $E \leq_B F$) if and only if there exists a Borel map $f: X \rightarrow Y$ such that

$$x E y \iff f(x) F f(y).$$

- $E \sim_B F$ if and only if $E \leq_B F$ and $F \leq_B E$.

USEFUL EXAMPLES

Example (Orbit equivalence relations)

Let G be a Polish group. Let $G \curvearrowright X$ be a continuous action.

Example (Orbit equivalence relations)

Let G be a Polish group. Let $G \curvearrowright X$ be a continuous action. Denote by E_G^X the **orbit equivalence relation** arising from the action:

$$x E_G^X y \iff \exists g \in G (g \cdot x = y).$$

USEFUL EXAMPLES

Example (Orbit equivalence relations)

Let G be a Polish group. Let $G \curvearrowright X$ be a continuous action. Denote by E_G^X the **orbit equivalence relation** arising from the action:

$$x E_G^X y \iff \exists g \in G (g \cdot x = y).$$

Note E_G^X is a Σ_1^1 .

USEFUL EXAMPLES

Example (Orbit equivalence relations)

Let G be a Polish group. Let $G \curvearrowright X$ be a continuous action. Denote by E_G^X the **orbit equivalence relation** arising from the action:

$$x E_G^X y \iff \exists g \in G (g \cdot x = y).$$

Note E_G^X is a Σ_1^1 .

A special case: the isomorphism relation

For a countable first-order language \mathcal{L} we can define the **Polish space of countable enumerated \mathcal{L} -structures** whose universe is \mathbb{N} .

USEFUL EXAMPLES

Example (Orbit equivalence relations)

Let G be a Polish group. Let $G \curvearrowright X$ be a continuous action. Denote by E_G^X the **orbit equivalence relation** arising from the action:

$$x E_G^X y \iff \exists g \in G (g \cdot x = y).$$

Note E_G^X is a Σ_1^1 .

A special case: the isomorphism relation

For a countable first-order language \mathcal{L} we can define the **Polish space of countable enumerated \mathcal{L} -structures** whose universe is \mathbb{N} .

For \mathcal{M}, \mathcal{N} we have

$$\mathcal{M} \cong_{\mathcal{L}} \mathcal{N} \iff \exists g \in S_{\infty} (g \cdot \mathcal{M} = \mathcal{N}),$$

USEFUL EXAMPLES

Example (Orbit equivalence relations)

Let G be a Polish group. Let $G \curvearrowright X$ be a continuous action. Denote by E_G^X the **orbit equivalence relation** arising from the action:

$$x E_G^X y \iff \exists g \in G (g \cdot x = y).$$

Note E_G^X is a Σ_1^1 .

A special case: the isomorphism relation

For a countable first-order language \mathcal{L} we can define the **Polish space of countable enumerated \mathcal{L} -structures** whose universe is \mathbb{N} .

For \mathcal{M}, \mathcal{N} we have

$$\mathcal{M} \cong_{\mathcal{L}} \mathcal{N} \iff \exists g \in S_{\infty} (g \cdot \mathcal{M} = \mathcal{N}),$$

Here $S_{\infty} = \{f: \mathbb{N} \xrightarrow[\text{su}]{1-1} \mathbb{N}\}$ acts on $X_{\mathcal{L}}$ by permuting the universe set.

THE ANALYTIC ZOO

The Zoo

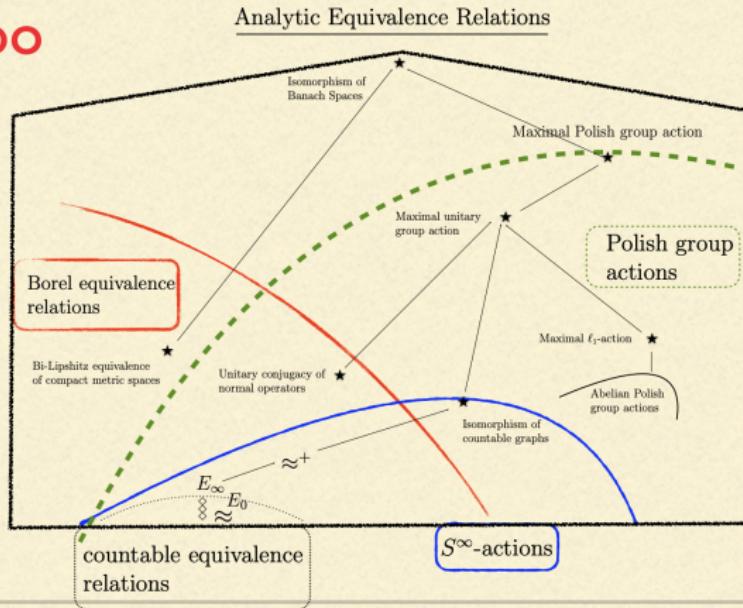


Figure: Courtesy of Matt Foreman.

IDEALISTIC EQUIVALENCE RELATIONS

Definition (Kechris–Louveau'97; après Kechris '92)

An equivalence relation E on a Polish space X is **idealistic** if there is a map assigning to each $C \in X/E$ a nontrivial σ -ideal I_C on C such that:

Definition (Kechris–Louveau'97; après Kechris '92)

An equivalence relation E on a Polish space X is **idealistic** if there is a map assigning to each $C \in X/E$ a nontrivial σ -ideal I_C on C such that:

- $C \notin I_C$;

Definition (Kechris–Louveau'97; après Kechris '92)

An equivalence relation E on a Polish space X is **idealistic** if there is a map assigning to each $C \in X/E$ a nontrivial σ -ideal I_C on C such that:

- $C \notin I_C$;
- I_C is ccc;

Definition (Kechris–Louveau'97; après Kechris '92)

An equivalence relation E on a Polish space X is **idealistic** if there is a map assigning to each $C \in X/E$ a nontrivial σ -ideal I_C on C such that:

- $C \notin I_C$;
- I_C is ccc;
- $C \mapsto I_C$ is **Borel-on-Borel**, i.e., for each Borel $A \subseteq X \times X$, the set

$$\{x \in X \mid [x]_E \cap A_x \in I_{[x]_E}\}.$$

is Borel.

IDEALISTIC EQUIVALENCE RELATIONS

Definition (Kechris–Louveau'97; après Kechris '92)

An equivalence relation E on a Polish space X is **idealistic** if there is a map assigning to each $C \in X/E$ a nontrivial σ -ideal I_C on C such that:

- $C \notin I_C$;
- I_C is ccc;
- $C \mapsto I_C$ is **Borel-on-Borel**, i.e., for each Borel $A \subseteq X \times X$, the set

$$\{x \in X \mid [x]_E \cap A_x \in I_{[x]_E}\}.$$

is Borel.

This is a technical definition that is better motivated by examples.

Example

- Let G be Polish and locally compact with Haar measure μ and $E = E_G^X$ for some continuous action $G \curvearrowright X$.

IDEALISTIC EQUIVALENCE RELATIONS (EXAMPLES)

Example

- Let G be Polish and locally compact with Haar measure μ and $E = E_G^X$ for some continuous action $G \curvearrowright X$.
For each orbit $C = [x]_{E_G^X}$ in X/E_G^X consider the function

$$\begin{aligned}f_x: G &\rightarrow [x]_{E_G^X} \\g &\mapsto g \cdot x\end{aligned}$$

and let μ_x the image of μ under f .

IDEALISTIC EQUIVALENCE RELATIONS (EXAMPLES)

Example

- Let G be Polish and locally compact with Haar measure μ and $E = E_G^X$ for some continuous action $G \curvearrowright X$.
For each orbit $C = [x]_{E_G^X}$ in X/E_G^X consider the function

$$\begin{aligned}f_x: G &\rightarrow [x]_{E_G^X} \\g &\mapsto g \cdot x\end{aligned}$$

and let μ_x the image of μ under f . Then define

$$A \in I_C \iff \mu_x(A) = 0.$$

IDEALISTIC EQUIVALENCE RELATIONS (EXAMPLES)

Example

- Let G be Polish and locally compact with Haar measure μ and $E = E_G^X$ for some continuous action $G \curvearrowright X$.
For each orbit $C = [x]_{E_G^X}$ in X/E_G^X consider the function

$$\begin{aligned}f_x: G &\rightarrow [x]_{E_G^X} \\g &\mapsto g \cdot x\end{aligned}$$

and let μ_x the image of μ under f . Then define

$$A \in I_C \iff \mu_x(A) = 0.$$

- Let $E = E_G^X$ for some continuous action $G \curvearrowright X$.

IDEALISTIC EQUIVALENCE RELATIONS (EXAMPLES)

Example

- Let G be Polish and locally compact with Haar measure μ and $E = E_G^X$ for some continuous action $G \curvearrowright X$.
For each orbit $C = [x]_{E_G^X}$ in X/E_G^X consider the function

$$\begin{aligned}f_x: G &\rightarrow [x]_{E_G^X} \\g &\mapsto g \cdot x\end{aligned}$$

and let μ_x the image of μ under f . Then define

$$A \in I_C \iff \mu_x(A) = 0.$$

- Let $E = E_G^X$ for some continuous action $G \curvearrowright X$. For any $x \in X$, define the corresponding ideal $I_{[x]_E}$ by

$$A \in I_{[x]_E} \iff \{g: g \cdot x \in A\} \in \text{MGR}(G).$$

IDEALISTIC EQUIVALENCE RELATIONS (COUNTEREXAMPLE)

For $X = (2^{\mathbb{N}})^{\mathbb{N}}$ and $x, y \in X$ define

$$x E_1 y \iff \exists m \forall n \geq m (x(n) = y(n)).$$

IDEALISTIC EQUIVALENCE RELATIONS (COUNTEREXAMPLE)

For $X = (2^{\mathbb{N}})^{\mathbb{N}}$ and $x, y \in X$ define

$$x E_1 y \iff \exists m \forall n \geq m (x(n) = y(n)).$$

Note that E_1 is **hypersmooth**; i.e., increasing union of smooth equivalence relations.

IDEALISTIC EQUIVALENCE RELATIONS (COUNTEREXAMPLE)

For $X = (2^{\mathbb{N}})^{\mathbb{N}}$ and $x, y \in X$ define

$$x E_1 y \iff \exists m \forall n \geq m (x(n) = y(n)).$$

Note that E_1 is **hypersmooth**; i.e., increasing union of smooth equivalence relations.

Theorem (Kechris-Louveau '97)

Let E be a **non-smooth, hypersmooth** Borel equivalence relation. Then exactly one of the following holds:

1. $E \sim_B E_0$,
2. $E \sim_B E_1$.

COUNTEREXAMPLE

Theorem (Kechris–Louveau'97)

*If E is **Borel** and **idealistic**, then $E_1 \not\leq_B E$.*

COUNTEREXAMPLE

Theorem (Kechris–Louveau'97)

*If E is **Borel** and **idealistic**, then $E_1 \not\leq_B E$.*

Fact

E_1 is not idealistic.

COUNTEREXAMPLE

Theorem (Kechris–Louveau'97)

*If E is **Borel** and **idealistic**, then $E_1 \not\leq_B E$.*

Fact

E_1 is not idealistic.

Theorem (Kechris–Louveau'97)

Let E be an orbit equivalence relation, then $E_1 \not\leq_B E$.

COUNTEREXAMPLE

Theorem (Kechris–Louveau'97)

*If E is **Borel** and **idealistic**, then $E_1 \not\leq_B E$.*

Fact

E_1 is not idealistic.

Theorem (Kechris–Louveau'97)

Let E be an orbit equivalence relation, then $E_1 \not\leq_B E$.

This is commonly used to prove that certain equivalence relations are not classifiable by orbit equivalence relations.

Question (Kechris–Louveau '97)

If E is a Borel equivalence relation, is it true that either

1. $E_1 \leq_B E$, or
2. E is idealistic?

HOPING FOR A DICHOTOMY

Question (Kechris–Louveau '97)

If E is a Borel equivalence relation, is it true that either

1. $E_1 \leq_B E$, or
2. E is idealistic?

E_1 dichotomy conjecture (Hjorth–Kechris '97)

Yes.

INTERMEZZO

Definition

Let E, F be equivalence relations on the Polish spaces X, Y respectively. We say that:

Definition

Let E, F be equivalence relations on the Polish spaces X, Y respectively. We say that:

- E is **class-wise Borel isomorphic** to F (in symbols $E \simeq_{cB} F$) if there is a bijection $\theta: X/E \rightarrow Y/F$ such that both θ and θ^{-1} have Borel lifting.

Definition

Let E, F be equivalence relations on the Polish spaces X, Y respectively. We say that:

- E is **class-wise Borel isomorphic** to F (in symbols $E \simeq_{cB} F$) if there is a bijection $\theta: X/E \rightarrow Y/F$ such that both θ and θ^{-1} have Borel lifting.
- E is **class-wise Borel embeddable** to F (in symbols $E \sqsubseteq_{cB} F$) if there is an F -saturated Borel $A \subseteq Y$ such that $E \simeq_{cB} (F \upharpoonright A)$.

Definition

Let E, F be equivalence relations on the Polish spaces X, Y respectively. We say that:

- E is **class-wise Borel isomorphic** to F (in symbols $E \simeq_{cB} F$) if there is a bijection $\theta: X/E \rightarrow Y/F$ such that both θ and θ^{-1} have Borel lifting.
- E is **class-wise Borel embeddable** to F (in symbols $E \sqsubseteq_{cB} F$) if there is an F -saturated Borel $A \subseteq Y$ such that $E \simeq_{cB} (F \upharpoonright A)$.

While $E \leq_B F$ and $F \leq_B E$ does not imply $E \cong_B F$, we have

$$E \sqsubseteq_{cB} F \text{ and } F \sqsubseteq_{cB} E \iff E \cong_{cB} F.$$

INTERMEZZO (CONT'D)

For $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$ define

$$(x_1, y_1) E (x_2, y_2) \iff x_1 = x_2.$$

Clearly $E \simeq_{cB} \text{id}_{\mathbb{R}}$ but $E \not\simeq_B \text{id}_{\mathbb{R}}$.

INTERMEZZO (CONT'D)

For $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$ define

$$(x_1, y_1) E (x_2, y_2) \iff x_1 = x_2.$$

Clearly $E \simeq_{cB} \text{id}_{\mathbb{R}}$ but $E \not\simeq_B \text{id}_{\mathbb{R}}$.

Moreover,

Theorem (Gao '01)

$$\cong_{\text{GRAPHS}} \not\subseteq_{cB} \cong_{\text{TREE}}.$$

INTERMEZZO (CONT'D)

For $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$ define

$$(x_1, y_1) E (x_2, y_2) \iff x_1 = x_2.$$

Clearly $E \simeq_{cB} \text{id}_{\mathbb{R}}$ but $E \not\simeq_B \text{id}_{\mathbb{R}}$.

Moreover,

Theorem (Gao '01)

$$\cong_{\text{GRAPHS}} \not\subseteq_{cB} \cong_{\text{TREE}}.$$

So $\cong_{\text{GRAPHS}} \sim_B \cong_{\text{TREE}}$ but $\cong_{\text{GRAPHS}} \not\simeq_{cB} \cong_{\text{TREE}}$.

END INTERMEZZO

A COUNTEREXAMPLE?

Theorem (Hjorth '05)

*There is a **Borel equivalence relation** R such that:*

1. $R \leq_B F$ for some **countable Borel equivalence relation** F
2. R is not Borel bi-reducible with any **countable Borel equivalence relation**.

A COUNTEREXAMPLE?

Theorem (Hjorth '05)

*There is a **Borel equivalence relation** R such that:*

1. $R \leq_B F$ for some **countable Borel equivalence relation** F
2. R is not Borel bi-reducible with any **countable Borel equivalence relation**.

Therefore, "essentially countable" = "Borel bi-reducible to countable".

A COUNTEREXAMPLE?

Theorem (Hjorth '05)

*There is a **Borel equivalence relation** R such that:*

1. $R \leq_B F$ for some **countable Borel equivalence relation** F
2. R is not Borel bi-reducible with any **countable Borel equivalence relation**.

Therefore, "essentially countable" = "Borel bi-reducible to countable".

Theorem (Kechris–MacDonald '16)

*If E is an **idealistic equivalence relation** and F is a **Borel equivalence relation**, then $E \leq_B F \iff E \sqsubseteq_{cB} F$.*

A COUNTEREXAMPLE?

Theorem (Hjorth '05)

*There is a **Borel equivalence relation** R such that:*

1. $R \leq_B F$ for some **countable Borel equivalence relation** F
2. R is not Borel bi-reducible with any **countable Borel equivalence relation**.

Therefore, "essentially countable" = "Borel bi-reducible to countable".

Theorem (Kechris–MacDonald '16)

*If E is an **idealistic equivalence relation** and F is a **Borel equivalence relation**, then $E \leq_B F \iff E \sqsubseteq_{cB} F$.*

Corollary

- Hjorth's R is not idealistic and E_1 **dichotomy is false**.

A COUNTEREXAMPLE?

Theorem (Hjorth '05)

*There is a **Borel equivalence relation** R such that:*

1. $R \leq_B F$ for some **countable Borel equivalence relation** F
2. R is not Borel bi-reducible with any **countable Borel equivalence relation**.

Therefore, "essentially countable" = "Borel bi-reducible to countable".

Theorem (Kechris–MacDonald '16)

*If E is an **idealistic equivalence relation** and F is a **Borel equivalence relation**, then $E \leq_B F \iff E \sqsubseteq_{cB} F$.*

Corollary

- Hjorth's R is not idealistic and E_1 **dichotomy is false**.
- The class of idealistic equivalence relations is not closed downward.

«SO THE LOGICIANS ENTERED THE
PICTURE IN THEIR USUAL STYLE, AS
SPOILERS.»
(MOSCHOVAKIS)

Theorem (Becker 2001)

Assume Σ_1^1 determinacy. There is an equivalence relation $E_{\mathbb{B}}$ on a Polish space \mathbb{X} such that

1. $E_{\mathbb{B}}$ is Σ_1^1 ;
2. $E_{\mathbb{B}}$ -classes are Borel;
3. $E_{\mathbb{B}}$ is idealistic;
4. There is no Polish group G acting on \mathbb{X} continuously such that $E = E_G^{\mathbb{X}}$.

Theorem (Becker 2001)

Assume Σ_1^1 determinacy. There is an equivalence relation $E_{\mathbb{B}}$ on a Polish space \mathbb{X} such that

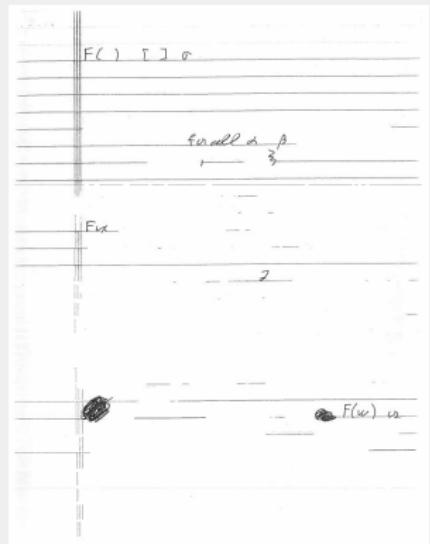
1. $E_{\mathbb{B}}$ is Σ_1^1 ;
2. $E_{\mathbb{B}}$ -classes are Borel;
3. $E_{\mathbb{B}}$ is idealistic;
4. There is no Polish group G acting on \mathbb{X} continuously such that $E = E_G^{\mathbb{X}}$.

This answered a question of Kechris, who previously asked whether (1)–(3) implies \neg (4).

- Becker's theorem appeared in some handwritten notes, circulated among experts in early 2000s.

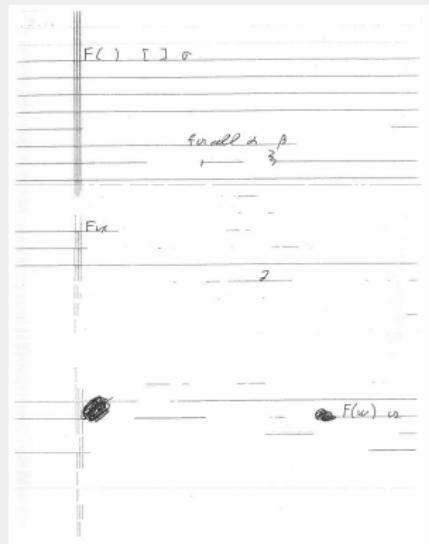
BECKER'S MANUSCRIPT

- Becker's theorem appeared in some handwritten notes, circulated among experts in early 2000s.
- Solecki gently provided us a scanned copy.



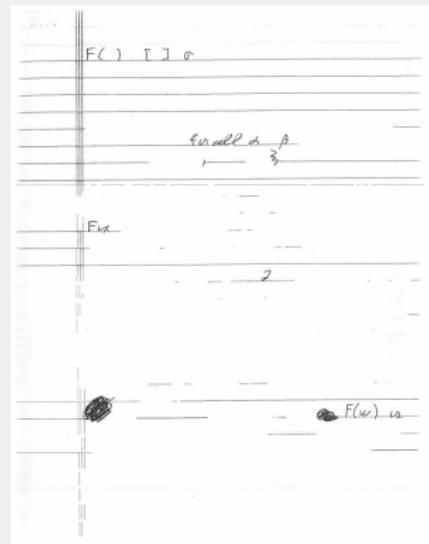
BECKER'S MANUSCRIPT

- Becker's theorem appeared in some handwritten notes, circulated among experts in early 2000s.
- Solecki gently provided us a scanned copy. The file was corrupted.



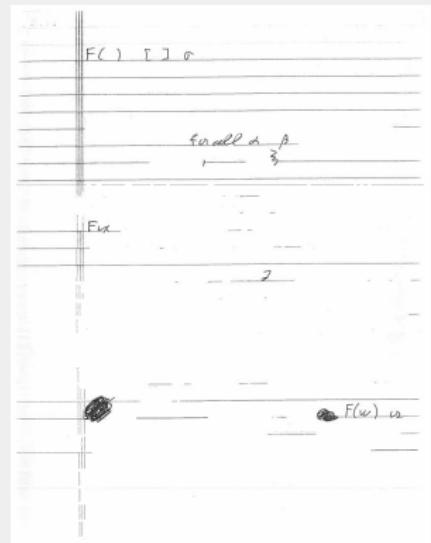
BECKER'S MANUSCRIPT

- Becker's theorem appeared in some handwritten notes, circulated among experts in early 2000s.
- Solecki gently provided us a scanned copy. The file was corrupted.
- We asked Kechris, who had the same version as Solecki's.



BECKER'S MANUSCRIPT

- Becker's theorem appeared in some handwritten notes, circulated among experts in early 2000s.
- Solecki gently provided us a scanned copy. The file was corrupted.
- We asked Kechris, who had the same version as Solecki's.
- We asked Becker, who kindly replied to our message and sent us a fully readable version.



ORBIT VS. IDEALISTIC (REMASTERED)

Theorem (Motto Ros-C. 2025; après Becker 2001)

Assume Σ_1^1 determinacy. There is an equivalence relation $E_{\mathbb{B}}$ such that:

1. $E_{\mathbb{B}}$ is Σ_1^1 ;
2. $E_{\mathbb{B}}$ -classes are Borel;
3. $E_{\mathbb{B}}$ is idealistic;
- 4'. $E_{\mathbb{B}}$ is not class-wise Borel embeddable into any orbit equivalence relation.

ORBIT VS. IDEALISTIC (REMASTERED)

Theorem (Motto Ros-C. 2025; après Becker 2001)

Assume Σ_1^1 determinacy. There is an equivalence relation $E_{\mathbb{B}}$ such that:

1. $E_{\mathbb{B}}$ is Σ_1^1 ;
2. $E_{\mathbb{B}}$ -classes are Borel;
3. $E_{\mathbb{B}}$ is idealistic;
- 4'. $E_{\mathbb{B}}$ is not class-wise Borel embeddable into any orbit equivalence relation.

Moreover, let \mathcal{I} be the class of Σ_1^1 equivalence relations with (1)–(4').

Theorem (Motto Ros-C. 2025)

Assume Σ_1^1 determinacy. The poset $(\mathcal{P}(\omega)/fin, \subseteq)$ embeds into $(\mathcal{I}, \sqsubseteq_{cB})$.

ABELIAN p -GROUPS

Fix a prime p .

ABELIAN p -GROUPS

Fix a prime p .

Definition

An abelian group G is a **p -group** if every nontrivial element has order p^n for some $n \in \mathbb{N}$.

Fix a prime p .

Definition

An abelian group G is a **p -group** if every nontrivial element has order p^n for some $n \in \mathbb{N}$.

Examples

- $C_{p^n} = \mathbb{Z}/p^n\mathbb{Z}$

ABELIAN p -GROUPS

Fix a prime p .

Definition

An abelian group G is a **p -group** if every nontrivial element has order p^n for some $n \in \mathbb{N}$.

Examples

- $C_{p^n} = \mathbb{Z}/p^n\mathbb{Z}$
- $C_p \oplus C_{p^2} \oplus \cdots \oplus C_{p^n} \oplus \cdots$

Fix a prime p .

Definition

An abelian group G is a **p -group** if every nontrivial element has order p^n for some $n \in \mathbb{N}$.

Examples

- $C_{p^n} = \mathbb{Z}/p^n\mathbb{Z}$
- $C_p \oplus C_{p^2} \oplus \cdots \oplus C_{p^n} \oplus \cdots$
- The quasi-cyclic p -group $\mathbb{Z}(p^\infty) = \mathbb{Z}[1/p]/\mathbb{Z}$

p -GROUPS AND ULM CLASSIFICATION

Any countable abelian p -group G decomposes as

$$G = D(G) \oplus R(G)$$

The **divisible part** $D(G) = \underbrace{\mathbb{Z}(p^\infty) \oplus \cdots \oplus \mathbb{Z}(p^\infty)}_{r \text{ times}}$ for $r = 0, 1, \dots, \omega$.

p -GROUPS AND ULM CLASSIFICATION

Any countable abelian p -group G decomposes as

$$G = D(G) \oplus R(G)$$

The **divisible part** $D(G) = \underbrace{\mathbb{Z}(p^\infty) \oplus \cdots \oplus \mathbb{Z}(p^\infty)}_{r \text{ times}}$ for $r = 0, 1, \dots, \omega$.

The **reduced part** $R(G)$ is completely classified by the **Ulm invariant**, which is a sequence in $(\mathbb{N} \cup \{\infty\})^{<\omega_1}$ that completely encodes the isomorphism type of $R(G)$.

DEFINITION OF $E_{\mathbb{B}}$

Let $\mathcal{L}' = \{+\}$ be the language of Abelian groups.

DEFINITION OF $E_{\mathbb{B}}$

Let $\mathcal{L}' = \{+\}$ be the language of Abelian groups. Expand \mathcal{L}' to \mathcal{L} by adding a constant a_0, a_1, \dots for each element of the infinite rank quasi-cyclic p -group $\mathbb{Z}(p^\infty)^\omega$.

DEFINITION OF $E_{\mathbb{B}}$

Let $\mathcal{L}' = \{+\}$ be the language of Abelian groups. Expand \mathcal{L}' to \mathcal{L} by adding a constant a_0, a_1, \dots for each element of the infinite rank quasi-cyclic p -group $\mathbb{Z}(p^\infty)^\omega$.

Let T' be the \mathcal{L}' -theory of abelian p -groups and let

$$T = T' \cup \text{Diag}(\mathbb{Z}(p^\infty)^\omega).$$

DEFINITION OF $E_{\mathbb{B}}$

Let $\mathcal{L}' = \{+\}$ be the language of Abelian groups. Expand \mathcal{L}' to \mathcal{L} by adding a constant a_0, a_1, \dots for each element of the infinite rank quasi-cyclic p -group $\mathbb{Z}(p^\infty)^\omega$.

Let T' be the \mathcal{L}' -theory of abelian p -groups and let

$$T = T' \cup \text{Diag}(\mathbb{Z}(p^\infty)^\omega).$$

For $\mathcal{A}, \mathcal{B} \in X_T$ define

$$(\mathcal{A}, \mathcal{B}) \in E_{\mathbb{B}} \iff H(\mathcal{A}) \cong_{\mathcal{L}'} H(\mathcal{B}),$$

where $H(\mathcal{A})$ and $H(\mathcal{B})$ are the \mathcal{L}' -reducts of \mathcal{A} and \mathcal{B} , respectively.

DEFINITION OF $E_{\mathbb{B}}$ (CONT'D)

Note that if

$$\mathcal{A} = R(\mathcal{A}) \oplus \mathbb{Z}(p^\infty)^\omega \oplus \underbrace{\mathbb{Z}(p^\infty) \oplus \mathbb{Z}(p^\infty)}_{\text{unnamed}}$$

$$\mathcal{B} = R(\mathcal{A}) \oplus \mathbb{Z}(p^\infty)^\omega \oplus \underbrace{\mathbb{Z}(p^\infty) \oplus \mathbb{Z}(p^\infty) \oplus \mathbb{Z}(p^\infty)}_{\text{unnamed}},$$

then $\mathcal{A} \not\cong_{\mathcal{L}} \mathcal{B}$ but $(\mathcal{A}, \mathcal{B}) \in E_{\mathbb{B}}$.

A FEW COMMENTS ON THE PROOF

Theorem (Becker 2001)

3. $E_{\mathbb{B}}$ ***is idealistic.***

A FEW COMMENTS ON THE PROOF

Theorem (Becker 2001)

3. $E_{\mathbb{B}}$ is **idealistic**.

Definition

Suppose that $E \subseteq F$ are analytic equivalence relations on X . If $\theta: X \rightarrow X$ is a homomorphism from F to E such that $\theta(x) F x$ for all $x \in X$, then we say that θ **selects an E -class within each F -class**.

Proposition

Let E be an orbit equivalence relation induced by a Borel action $G \curvearrowright X$ of a Polish group G on a Polish space E . Let $F \supseteq E$ be any equivalence relation on X .

Proposition

Let E be an orbit equivalence relation induced by a Borel action $G \curvearrowright X$ of a Polish group G on a Polish space E . Let $F \supseteq E$ be any equivalence relation on X . If there is a Borel map $\theta: X \rightarrow X$ selecting an E -class within every F -class, then F is idealistic.

In our case let

$$\theta(\mathcal{A}) = \mathcal{A} \oplus \underbrace{\mathbb{Z}(p^\infty) \oplus \cdots \oplus \mathbb{Z}(p^\infty) \oplus \cdots}_{\omega \text{ unnamed copies}}$$

Question (Becker)

Is Becker's equivalence relation $E_{\mathbb{B}}$ **Borel bi-reducible** with an orbit equivalence relation? It is not hard to see that $E_{\mathbb{B}}$ is **Borel reducible** to $\cong_{\mathcal{L}'}$ by definition.

OPEN QUESTIONS

Question (Becker)

Is Becker's equivalence relation $E_{\mathbb{B}}$ **Borel bi-reducible** with an orbit equivalence relation? It is not hard to see that $E_{\mathbb{B}}$ is **Borel reducible** to $\cong_{\mathcal{L}'}$ by definition.

Question (Becker)

Can we remove the hypothesis of Σ_1^1 -determinacy?

OPEN QUESTIONS

Question (Becker)

Is Becker's equivalence relation $E_{\mathbb{B}}$ **Borel bi-reducible** with an orbit equivalence relation? It is not hard to see that $E_{\mathbb{B}}$ is **Borel reducible** to $\cong_{\mathcal{L}'}$ by definition.

Question (Becker)

Can we remove the hypothesis of Σ_1^1 -determinacy?

New E_1 Conjecture

Let E be a Borel equivalence relation. Then either $E_1 \leq_B E$ or E is Borel reducible to an idealistic (or orbit) equivalence relation.

Question

Is every idealistic equivalence relation on a Polish space Borel bi-reducible to an orbit equivalence relation?

MORE ABOUT ORBIT VS. IDEALISTIC

Question

Is every idealistic equivalence relation on a Polish space Borel bi-reducible to an orbit equivalence relation?

Proposition

*Let E be an idealistic equivalence relation, and suppose that $E \leq_B F$ for some **Borel orbit** equivalence relation F . Then E is **classwise Borel isomorphic** to (and hence Borel bireducible with) a Borel orbit equivalence relation.*

REFERENCES

 H. BECKER
IDEALISTIC EQUIVALENCE RELATIONS
Handwritten notes, 2001.

 F. CALDERONI AND L. MOTTO Ros
STRUCTURAL RESULTS ON IDEALISTIC EQUIVALENCE RELATIONS
Submitted, 2025

 A.S. KECHRIS
COUNTABLE SECTIONS FOR LOCALLY COMPACT GROUP ACTIONS.
Ergodic Theory and Dynamical Systems, 12(2):283–295, 1992.

 A. S. KECHRIS AND A. LOUVEAU
THE CLASSIFICATION OF HYPERSMOOTH BOREL EQUIVALENCE RELATIONS.
J. Amer. Math. Soc., 10:215–242, 1997.

THANK YOU!