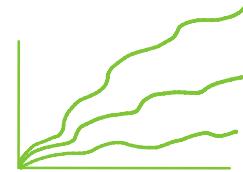
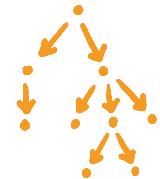


Hyperfinite Partial Orders

joint work with
Matthew Harrison-Trainor



Caltech Logic Seminar 2026

① Introduction

Motivating question Is there a Borel function $F: 2^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ such that for all $x, y \in 2^{\mathbb{N}}$, $x <_{\mathbb{T}} y \Rightarrow F(x) <^* F(y)$?

Definition For $f, g \in \mathbb{N}^{\mathbb{N}}$, $f <^* g$ means $\exists N \forall n \geq N, f(n) < g(n)$
i.e. f is eventually dominated by g

Comments

- ① Related to various other questions about the Turing degrees
E.g. Martin's Conjecture, a question of Day & Marks, etc
- ② There is a Borel function $F: 2^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ such that $x' \leq_{\mathbb{T}} y \Rightarrow F(x) <^* F(y)$

Answer to motivating question No.

Proof outline: ① Such an F exists \Rightarrow $<_{\mathbb{T}}$ is hyperfinite
② $<_{\mathbb{T}}$ is not hyperfinite

??

Goal of this talk Introduce hyperfiniteness for Borel partial orders

② Hyperfiniteness

Def A partial order (X, \leq) is:

locally finite if $\forall x, \{y \in X \mid y \leq x\}$ is finite

locally countable if $\forall x, \{y \in X \mid y \leq x\}$ is countable

Def A Borel partial order (X, \leq) is **hyperfinite** if it is a countable increasing union of locally finite Borel partial orders

i.e. there are locally finite Borel partial orders $\{\leq_n\}_{n \in \mathbb{N}}$ on X

such that ① $x \leq_n y \Rightarrow x \leq_{n+1} y$ increasing

② $x \leq y \Rightarrow \exists n, x \leq_n y \leq \bigcup_n \leq_n$

Comments ① Hyperfinite \Rightarrow locally countable

② This definition works equally well for quasi-orders (generalizing hyperfinite BERS)

So do many (but not all) other things in this talk

Def A Borel partial order (X, \leq) is **hyperfinite** if it is a countable increasing union of locally finite Borel partial orders

Example \leq on $2^\mathbb{N}$ defined by $10111\dots \leq 0111\dots \leq 1111\dots$

$x \leq y \Leftrightarrow$ $x =^* y$ and $x \neq y$ and for the largest k s.t. $x(k) \neq y(k)$, $x(k) < y(k)$

eventually equal

Define \leq_n by:

$x \leq_n y \Leftrightarrow x \leq y$ and $\forall k \geq n, x(k) = y(k)$

Comment If \leq is generated by an \mathbb{N} -action then it is hyperfinite

$x \leq y \Leftrightarrow \exists n \in \mathbb{N}, x = n \cdot y$

Question What about $\mathbb{N}^\mathbb{N}$?

Question Generic hyperfiniteness?

③ Hyperwellfoundedness

Ihm Suppose (X, \leq) is a locally countable Borel partial order. Then \leq is hyperfinite if and only if there is a Borel function $F: X \rightarrow \mathbb{N}^{\mathbb{N}}$ such that $x \leq y \Rightarrow F(x) \leq^* F(y)$
i.e. a Borel homomorphism from \leq to \leq^*

Proof outline:

Hyperfinite \Rightarrow Borel hom. to \leq^* \Rightarrow hyperwellfounded ??

Comment Very roughly:

hyperwellfounded \approx hypersmooth

Def A Borel partial order (X, \leq) is **hyperwellfounded** if it is a countable increasing union of well-founded Borel partial orders

Def A Borel partial order (X, \leq) is **hyperwellfounded** if it is a countable increasing union of well-founded Borel partial orders

Example \leq^* on $\mathbb{N}^{\mathbb{N}}$

For each n , define \leq_n on $\mathbb{N}^{\mathbb{N}}$ by

$$f \leq_n g \iff \forall k \geq n, f(k) \leq g(k)$$

Well-foundedness:

$$f_0 >_n f_1 >_n f_2 >_n \dots \Rightarrow f_0(n) > f_1(n) > f_2(n) > \dots$$

Comments ① \leq^* is "hyperheight $\leq \omega$ "

② \leq^* is not hyperfinite
Because it's not locally countable

3.1 Hyperfinite \Rightarrow Hyperwellfounded

Assume: (X, \lessdot) is a locally ctbl Borel partial order

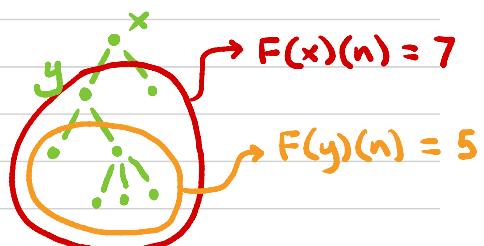
Prop If \lessdot is hyperfinite then it has a Borel hom. to \lessdot^*

pf Let $\{\lessdot_n\}_n$ witness hyperfiniteness

Define $F: X \rightarrow N^N$

$$F(x)(n) = \{y \in X \mid y \lessdot_n x\}$$

→ Borel by Lusin-Novikov



Prop If \lessdot has a Borel hom to \lessdot^* , then it is hyperwellfounded

pf Given $F: X \rightarrow N^N$, define

basically the proof that \lessdot^* is hyperwellfdd

$$x \lessdot_n y \Leftrightarrow x \lessdot y \text{ and } \forall k \geq n, F(x)(k) \lessdot F(y)(k)$$

3.2 Hyperwellfounded \Rightarrow Hyperfinite

Assume: (X, \lessdot) is a locally ctbl Borel partial order

Prop If \lessdot is hyperwellfounded then it is hyperfinite

Borel enumeration of predecessors $\xrightarrow{\text{PF}}$ Fix $\{\lessdot_n\}_n$ witnessing hyperwellfoundedness
 $g_n: X \rightarrow X^{\mathbb{N}}$ Borel functions s.t.
 $\forall x \{y \mid y \lessdot x\} = \{g_n(x) \mid n \in \mathbb{N}\}$

For each n , define

$$x \rightarrow_n y \iff x \lessdot_n y \text{ and } \exists k \leq n g_k(y) = x$$

and let \lessdot' be the transitive closure of \rightarrow_n

Observation $\bigcup_n \lessdot' = \lessdot$

Claim \lessdot' is locally finite

$\{ \subset_n \}_n$ witness hyperwellfoundedness

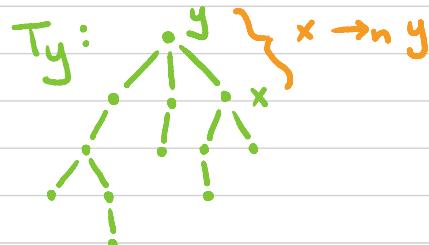
$\{ g_n : X \rightarrow X \}_n$ enumerate predecessors

$x \rightarrow_n y \Leftrightarrow x \subset_n y \text{ and } \exists k \leq n \ g_k(y) = x$
 $\subset'_n = \text{transitive closure of } \rightarrow_n$

Claim \subset'_n is locally finite

PF Fix $y \in X$. WTS $\{x \mid x \subset'_n y\}$ is finite

Key point: $\{x \mid x \subset'_n y\}$ can be thought of as a finitely branching tree



For each y , T_y is \leq_n -branching

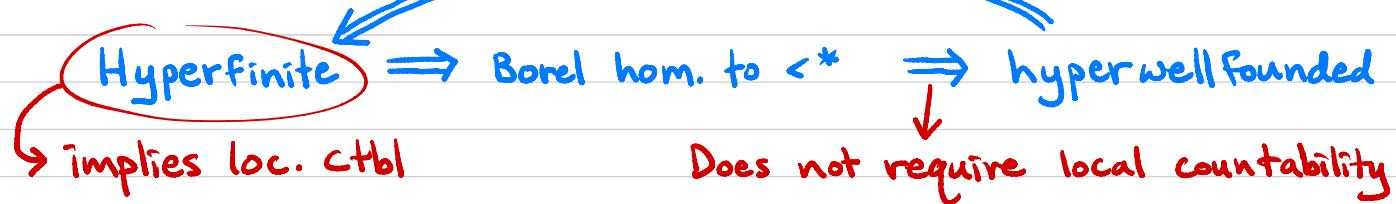
T_y is infinite $\Rightarrow T_y$ ill-founded

$\Rightarrow \subset_n$ ill-founded

3.3 Non-locally countable partial orders

Thm Suppose (X, \leq) is a locally countable Borel partial order. Then \leq is hyperfinite if and only if there is a Borel homomorphism from \leq to \leq^*

Proof outline:



What about the other (implicit) implication?

Question Does every ^v hyperwellfounded Borel partial order have a Borel homomorphism to \leq^* ?
not necessarily loc. ctbl

My guess: Probably not

Hyperwellfounded should not imply "hyperheight $\leq \omega$ "

④ Proving non-hyperfiniteness

Thm. Suppose (X, \leq) is a Borel partial order, μ is a Borel probability measure on X and $F_0, F_1 : X \rightarrow X$ are μ -independent functions such that for μ -almost every x , $F_0(x) \leq x$ and $F_1(x) \leq x$. Then \leq is not hyperwellfounded and hence not hyperfinite

Def Measurable functions $F, G : X \rightarrow X$ are μ -independent if for all measurable sets $A, B \subseteq X$

$$\mu(F^{-1}(A) \cap G^{-1}(B)) = \mu(A)\mu(B)$$

F, G μ -independent \Leftrightarrow F, G μ -measure preserving and independent as random variables ??

Example $F, G : 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ take left & right halves

$$x = x_0 x_1 x_2 x_3 \dots \quad F(x) = x_0 x_2 x_4 \dots \quad \left. \begin{array}{l} \text{Independent for} \\ \text{Lebesgue measure} \end{array} \right\}$$
$$G(x) = x_1 x_3 x_5 \dots$$

4.1 μ -independence

Assume: μ is a Borel probability measure on X

Def Measurable functions $F, G: X \rightarrow X$ are μ -independent if for all measurable sets $A, B \subseteq X$

$$\mu(F^{-1}(A) \cap G^{-1}(B)) = \mu(A)\mu(B)$$

Prop F, G μ -independent \Rightarrow μ -measure preserving

PF $\mu(F^{-1}(A)) = \mu(F^{-1}(A) \cap G^{-1}(X)) \stackrel{\text{μ-independence}}{=} \mu(A)\mu(X) \stackrel{\text{probability measure}}{=} \mu(A)$

Prop F, G μ -independent \Rightarrow For any measurable $A, B \subseteq X$,

$$\mu(F^{-1}(A) \cup G^{-1}(B)) = \mu(A) + \mu(B) - \mu(A)\mu(B)$$

PF $\mu(F^{-1}(A) \cup G^{-1}(B)) = \mu(F^{-1}(A)) + \mu(G^{-1}(B)) - \mu(F^{-1}(A) \cap G^{-1}(B))$
 $= \mu(A) + \mu(B) - \mu(A)\mu(B)$

4.2 Proof of non-hyperfiniteness

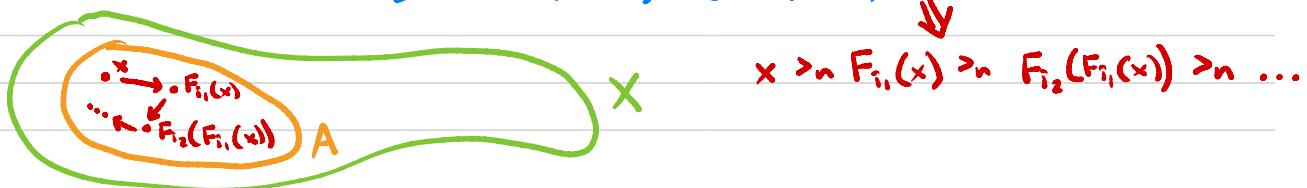
Thm Suppose (X, \lessdot) is a Borel partial order, μ is a Borel probability measure on X and $F_0, F_1 : X \rightarrow X$ are μ -independent functions such that for μ -almost every x , $F_0(x) \lessdot x$ and $F_1(x) \lessdot x$. Then \lessdot is not hyperwellfounded

pf Suppose for contradiction that \lessdot is hyperwellfounded
Let $\{\lessdot_n\}_n$ witness hyperwellfoundedness

Pick n large enough that $\mu(A) \geq 3/4$, where

$$A = \{x \in X \mid F_0(x) \lessdot_n x \text{ and } F_1(x) \lessdot_n x\}$$

Goal: Find $x \in A$ and $i_1, i_2, i_3, \dots \in \{0, 1\}$ such that
 $F_{i_1}(x), (F_{i_2} \circ F_{i_1})(x), (F_{i_3} \circ F_{i_2} \circ F_{i_1})(x), \dots \in A$



(X, \prec) : Borel partial order

μ : Borel probability measure on X

F_0, F_1 : μ -independent s.t. for μ -a.e. x , $F_0(x), F_1(x) \prec x$

$\{\prec_n\}_n$: witness hyperwellfoundedness of X

A : $\{x \mid F_0(x) \prec_n x \text{ and } F_1(x) \prec_n x\}$, $\mu(A) \geq 3/4$

Goal: Find $x \in A$, $i_1, i_2, i_3, \dots \in \{0, 1\}$ s.t. $F_{i_1}(x), F_{i_2}(F_{i_1}(x)), \dots \in A$

For each $k \in \mathbb{N}$, define

$$A_k = \{x \in A \mid \exists i_1, \dots, i_k (F_{i_1}(x), \dots, (F_{i_k} \circ \dots \circ F_{i_1})(x) \in A)\}$$

Claim For all k , $\mu(A_k) > 1/2$

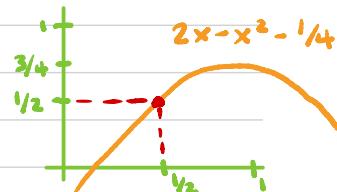
pf By induction. $A_0 = A \Rightarrow \mu(A_0) \geq 3/4 > 1/2$

$$A_{k+1} = A \cap (F_0^{-1}(A_k) \cup F_1^{-1}(A_k))$$

$$\Rightarrow \mu(A_{k+1}) \geq \mu(F_0^{-1}(A_k) \cup F_1^{-1}(A_k)) - 1/4$$

$$\stackrel{=} \mu(A_k) + \mu(A_k) - \mu(A_k) \mu(A_k) - 1/4$$

By μ -independence



(X, \prec) : Borel partial order

μ : Borel probability measure on X

F_0, F_1 : μ -independent s.t. for μ -a.e. x , $F_0(x), F_1(x) \prec x$

$\{\prec_n\}_n$: witness hyperwellfoundedness of X

A : $\{x \mid F_0(x) \prec_0 x \text{ and } F_1(x) \prec_1 x\}$, $\mu(A) \geq 3/4$

Goal: Find $x \in A$, $i_1, i_2, i_3, \dots \in \{0, 1\}$ s.t. $F_{i_1}(x), F_{i_2}(F_{i_1}(x)), \dots \in A$

For each $k \in \mathbb{N}$, define

$$A_k = \{x \in A \mid \exists i_1, \dots, i_k (F_{i_1}(x), \dots, (F_{i_k} \circ \dots \circ F_{i_1})(x) \in A)\}$$

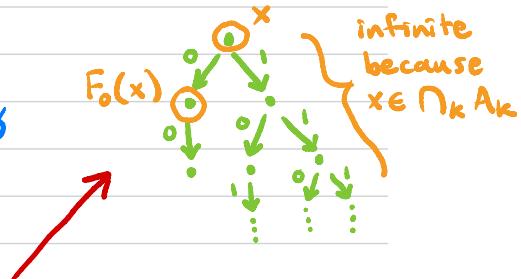
Claim For all k , $\mu(A_k) > 1/2$

Claim $\Rightarrow \mu(\bigcap_k A_k) \geq 1/2 \Rightarrow \bigcap_k A_k \neq \emptyset$

Note: $A_0 \supseteq A_1 \supseteq A_2 \supseteq \dots$

Pick $x \in \bigcap_k A_k$

König's lemma $\Rightarrow \exists i_1, i_2, i_3, \dots$ s.t. $F_{i_1}(x), F_{i_2}(F_{i_1}(x)), \dots \in A$



4.3 Monoid actions

Thm. Suppose (X, \leq) is a Borel partial order, μ is a Borel probability measure on X and $F_0, F_1 : X \rightarrow X$ are μ -independent functions such that for μ -almost every x , $F_0(x) \leq x$ and $F_1(x) \leq x$. Then \leq is not hyperwellfounded

On a set of measure 1, F_0, F_1 generate a free, measure-preserving action of the free monoid on 2 generators and the associated partial order is a suborder of \leq

Question Is independence necessary?

Suppose $F_0, F_1 : X \rightarrow X$ generate a free, μ -measure-preserving action of the free monoid on 2 generators. Can the associated partial order be hyperfinite?

Answer (Forte Shinko) Yes.

Question What is the appropriate notion of independence for actions of non-free monoids?

⑤ Turing reducibility

Motivating question Is there a Borel function $F: 2^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ such that for all $x, y \in 2^{\mathbb{N}}$, $x \leq_T y \Rightarrow F(x) \leq^* F(y)$?

Thm No such function exists

pf Equivalent: \leq_T is not hyperwellfounded

Let $F, G: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ take left & right halves

i.e. if $x = x_0 x_1 x_2 x_3 \dots$ then $F(x) = x_0 x_2 x_4 \dots$ $G(x) = x_1 x_3 x_5 \dots$

Well-known fact: For almost every x , $F(x), G(x) \leq_T x$

Mentioned previously: F, G independent for Lebesgue measure

$\Rightarrow \leq_T$ is not hyperwellfounded

Thm There is no Borel function $F: 2^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ such that for all $x, y \in 2^{\mathbb{N}}$, $x \leq_T y \Rightarrow F(x) \leq^* F(y)$

Prop There is a Borel function $F: 2^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ such that for all $x, y \in 2^{\mathbb{N}}$, $x' \leq_T y \Rightarrow F(x) \leq^* F(y)$

Cor The partial order $x' \leq_T y$ is hyperfinite

pf (of Prop) For each $x \in 2^{\mathbb{N}}$ and $n \in \mathbb{N}$, define

$$F(x)(n) = \max \{ \varphi_k^x(n) \mid k \leq n \text{ and } \varphi_k^x(n) \downarrow \} + 1$$

i.e. $F(x)$ eventually dominates each x -computable function

Suppose $x' \leq_T y$. $F(x) \leq_T x' \Rightarrow F(x) \leq_T y \Rightarrow F(x) \leq^* F(y)$

Question Is \leq^* hyperfinite?

Recall $x \ll y$ means y is of PA degree over x