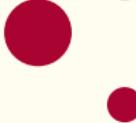


The rank problem for complete, separable metric spaces

Caltech seminar, February 4, 2026
Asger Törnquist (Univ. of Copenhagen)



Scott's analysis of a metric space

In a research note from 2012, Fokina, Friedman, Koerwien and Nies consider metric spaces as classical model-theoretic structures as follows:

- \mathcal{L} is a language where for every $q \in \mathbb{Q}_+$ there are binary relation symbols $R_{<q}$ and $R_{>q}$.
- Given a metric space (X, d_X) , we turn it into an \mathcal{L} -structure \mathfrak{X} by defining

$$R_{<q}^{\mathfrak{X}} = \{(x, y) \in X^2 \mid d(x, y) < q\}$$

$$R_{>q}^{\mathfrak{X}} = \{(x, y) \in X^2 \mid d(x, y) > q\}$$

Fokina, Friedman, Koerwien and Nies (FFKN) then consider the **classical Scott analysis** of such structures \mathfrak{X} (details on next slide), and ask:

Question (Fokina-Friedman-Koerwien-Nies)

Is the Scott rank of a **complete, separable** metric space countable?

Scott analysis of \mathfrak{X} || **Note:** (X, d_X) fixed metric space.

Notation: $X^{<\infty}$ = the set of finite sequences from X .

The Scott analysis of \mathfrak{X} will give a transfinite sequence

$$\simeq_0^{\text{FFKN}} \supseteq \simeq_1^{\text{FFKN}} \supseteq \dots \supseteq \simeq_\alpha^{\text{FFKN}} \supseteq \dots$$

of equivalence relations on $X^{<\infty}$, and the $\simeq_\alpha^{\text{FFKN}}$ approximate from above the equivalence relation

$\bar{a} \simeq_{\text{isomet}} \bar{b}$ iff there is an autoisometry of (X, d_X) mapping \bar{a} to \bar{b} .

Definition

For $\bar{a} = (a_0, \dots, a_{n-1}) \in X^{<\infty}$, the $n \times n$ **distance matrix** $\underline{D}^{d_X, \bar{a}}$ of \bar{a} is

$$\underline{D}_{i,j}^{d_X, \bar{a}} = d_X(a_i, a_j).$$

Definition of \simeq_0^{FFKN}

$\bar{a} \simeq_0^{\text{FFKN}} \bar{b}$ iff $\underline{D}^{d_X, \bar{a}} = \underline{D}^{d_X, \bar{b}}$ iff \bar{a} and \bar{b} have the same *quantifier-free* type.

Definition of $\simeq_{\alpha}^{\text{FFKN}}$ || **Note:** (X, d_X) fixed metric space.

Recursive definition of $\simeq_{\alpha}^{\text{FFKN}}$

By recursion on $\alpha \in \text{ON}$, define:

- ① $\bar{a} \simeq_0^{\text{FFKN}} \bar{b}$ is already defined to mean $D^{d_X, \bar{a}} = D^{d_X, \bar{b}}$.
- ② $\bar{a} \simeq_{\alpha+1}^{\text{FFKN}} \bar{b}$ iff
 - $\forall x \in X \ \exists y \in X \ \bar{a}^\frown x \simeq_{\alpha}^{\text{FFKN}} \bar{b}^\frown y \text{ and}$
 - $\forall y \in X \ \exists x \in X \ \bar{b}^\frown y \simeq_{\alpha}^{\text{FFKN}} \bar{a}^\frown x$.
- ③ $\bar{a} \simeq_{\lambda}^{\text{FFKN}} \bar{b}$ iff $\forall \alpha < \lambda \ \bar{a} \simeq_{\alpha}^{\text{FFKN}} \bar{b}$ when λ is a limit ordinal.

Remark: Suppose (X, d_X) is **separable**. If there is $\alpha^* \in \text{ON}$ such that

$$\bar{a} \simeq_{\alpha^*}^{\text{FFKN}} \bar{b} \implies \forall n > 0 \ \forall \bar{u}, \bar{v} \in X^n \ \forall \beta \ \bar{a}^\frown \bar{u} \simeq_{\beta}^{\text{FFKN}} \bar{b}^\frown \bar{v},$$

then a standard argument shows that there is an autoisometry of (X, d_X) which maps \bar{a} to \bar{b} .

This motivates the definition of rank on the next slide.

Definition of rk^{FFKN}

|| **Note:** (X, d_X) fixed metric space.

Definition of rk^{FFKN}

- ① For $\bar{a} \in X^{<\infty}$ of length > 0 , define:

$\text{rk}^{\text{FFKN}}(\bar{a}) = \text{the least } \alpha \text{ such that}$

$$\forall \bar{b} \quad \bar{a} \simeq_{\alpha}^{\text{FFKN}} \bar{b} \text{ implies } \forall \beta \quad \bar{a} \simeq_{\beta}^{\text{FFKN}} \bar{b}.$$

- ② $\text{rk}(X, d_X) = \sup\{\text{rk}^{\text{FFKN}}(\bar{a}) \mid \bar{a} \in X^{<\infty} \wedge \text{lh}(\bar{a}) > 0\}.$

Remark: A cardinality argument shows that $\text{rk}^{\text{FFKN}}(\bar{a})$ exists.

Question (Fokina-Friedman-Koerwien-Nies)

Is $\text{rk}^{\text{FFKN}}(X, d_X)$ **countable** when (X, d_X) is **complete and separable**?

- M. Doucha: $\text{rk}^{\text{FFKN}}(X, d_X) \leq \omega_1$ for (X, d_X) complete and separable.
- W. Chan: “Yes” if we impose some rigidity assumptions on (X, d_X) .

Theorem (T., 2026)

There is a complete, separable metric space of rank ω_1 .

Digraphs, Rado digraphs, coding of digraphs

Digraphs and Rado digraphs

The metric space $(E_{\mathfrak{R}}, d_{\mathfrak{R}})$ is obtained from the set of self-embeddings of the **Rado digraph** (see below) with some additional structure added.

It is easier to work with digraphs (i.e., directed graphs), rather than graphs, because ordinals (with their usual ordering) are digraphs.

Definition

- ① A **digraph** is a pair $(|Q|, Q)$ consisting of a set $|Q|$, the **domain** of the digraph, and an **irreflexive** relation $Q \subseteq |Q|^2$. For $x \in |Q|$, we let

$$Q_x = \{y \in |Q| \mid (x, y) \in Q\} \text{ and } Q^x = \{y \in |Q| \mid (y, x) \in Q\}$$

- ② A digraph R (where $|R|$ is allowed to have **any** infinite cardinality) will be called a **Rado digraph** if whenever we're given *finite* sets $A, B \subseteq C \subseteq |R|$ there is $x \in |R| \setminus C$ such that

$$R_x \cap C = A \text{ and } R^x \cap C = B.$$

Up to isomorphism, there is a unique **countable** Rado digraph.

For this talk, let \mathfrak{R} be a **fixed countable Rado digraph** with $|\mathfrak{R}| = \omega$.

Rado extension

It is easy to prove that any digraph can be embedded into a Rado digraph.

It'll be useful that this can be done in the following "nice way":

Definition

Let Q, R be digraphs with $|Q| \subseteq |R|$. We say that R is a **Rado extension** of Q , written $Q \sqsubset_r R$, if $Q = R \cap |Q|^2$ and the following two hold:

- ① For all finite $A, B \subseteq C \subseteq |R|$ there is $x \in |R| \setminus (|Q| \cup C)$ such that

$$R_x \cap (C \cup |Q|) = A \text{ and } R^x \cap (C \cup |Q|) = B.$$

- ② For all $x \in |R| \setminus |Q|$, the sets $R_x \cap |Q|$ and $R^x \cap |Q|$ are finite.

Proposition (Standard fact)

If $Q \sqsubset_r \mathfrak{R}$ and $S \sqsubset_r \mathfrak{R}$ and $\psi : Q \leftrightarrow S$ is an isomorphism, then ψ extends to an automorphism of \mathfrak{R} .

Warning: Not generally true if \mathfrak{R} is replaced by uncountable Rado digraph.

'Orthogonal' and coding with embeddings (Melleray-style)

Definition: Let Q and S be digraphs. Given $D \subseteq |Q|$, define

$$D^{\perp Q} = \{x \in |Q| \mid x \notin D \wedge Q_x \cap D = \emptyset \wedge Q^x \cap D = \emptyset\}.$$

If Q is understood, we write D^{\perp} .

So: " $D^{\perp} = |Q| \setminus (\partial D \cup D)$ ".

Definition (Recall: \mathfrak{R} is our fixed Rado digraph on ω)

Let Q be a digraph, R a Rado digraph. We say the digraph embedding $F : \mathfrak{R} \hookrightarrow R$ **codes** Q if

- ① Q is isomorphic to $R \upharpoonright \text{ran}(F)^{\perp R}$.
- ② $R \upharpoonright (\text{ran}(F) \cup (\text{ran } F)^{\perp R}) \sqsubset_r R$.

Proposition

- ① Every countable digraph Q is coded by some $F_Q : \mathfrak{R} \hookrightarrow \mathfrak{R}$.
- ② If $F_Q, F_S : \mathfrak{R} \hookrightarrow \mathfrak{R}$ code Q and S , respectively, then:

Q is isomorphic to S iff $\exists \sigma \in \text{Aut}(\mathfrak{R}) \ \sigma \circ F_Q = F_S$.

Definition of the metric space $(E_{\mathfrak{R}}, d_{\mathfrak{R}})$

The underlying set of $(E_{\mathfrak{R}}, d_{\mathfrak{R}})$

Definition

- ① For digraphs Q and S , let

$$\text{Emb}(Q, S) = \{F : |Q| \hookrightarrow |S| \mid F \text{ embeds } Q \text{ into } S\}.$$

- ② We let \mathcal{F} denote **the set of all digraphs whose domains are non-empty finite ordinals** (i.e., are in $\omega \setminus \{0\}$)
- ③ For S a digraph, we let

$$\text{Emb}(\mathcal{F}, S) = \{(P, f) \mid P \in \mathcal{F} \text{ and } f \text{ embeds } P \text{ into } S\}.$$

The set $E_{\mathfrak{R}}$ and the idea

The underlying set of the metric space $(E_{\mathfrak{R}}, d_{\mathfrak{R}})$ we will define is

$$E_{\mathfrak{R}} = \text{Emb}(\mathfrak{R}, \mathfrak{R}) \cup \text{Emb}(\mathcal{F}, \mathfrak{R}).$$

Idea:

- Elements of $\text{Emb}(\mathfrak{R}, \mathfrak{R})$ **code arbitrary countable digraphs** as we have seen, in particular **countable ordinals**.
- The distances in and from $\text{Emb}(\mathcal{F}, \mathfrak{R})$ to $F_Q \in \text{Emb}(\mathfrak{R}, \mathfrak{R})$ coding Q will **recover the classical Scott analysis** of the countable digraph Q .

Defining $d_{\mathfrak{R}}$ (and more generally d_R)

Over the next several slides, we'll define the desired $d_{\mathfrak{R}}$

- ① First on $\text{Emb}(\mathfrak{R}, \mathfrak{R})$.
- ② Then on $\text{Emb}(\mathcal{F}, \mathfrak{R})$.
- ③ Then finally we define the distances between points in $\text{Emb}(\mathfrak{R}, \mathfrak{R})$ and points in $\text{Emb}(\mathcal{F}, \mathfrak{R})$.

The first item on the list will be easy (next slide), but for the two next items on the list will use a function δ that we will define when we get there.

For reasons that has to do with the proof that $(E_{\mathfrak{R}}, d_{\mathfrak{R}})$ has rank ω_1 , it will be important not just to define the metric $d_{\mathfrak{R}}$ on

$$E_{\mathfrak{R}} = \text{Emb}(\mathfrak{R}, \mathfrak{R}) \cup \text{Emb}(\mathcal{F}, \mathfrak{R}),$$

but more generally a metric d_R on

$$E_R = \text{Emb}(\mathfrak{R}, R) \cup \text{Emb}(\mathcal{F}, R)$$

where R is an arbitrary Rado digraph **of any size**.

The metric $\text{Emb}(\mathfrak{R}, \mathfrak{R})$

In general, for a digraph R , we equip $\text{Emb}(\mathfrak{R}; R)$ with the metric

$$d_R^*(F, G) = \begin{cases} 0 & \text{if } F = G; \\ 2^{-\min\{k+1 \in \omega \mid F(k) \neq G(k)\}} & \text{if } F \neq G. \end{cases}$$

Note that d_R^* induces the pointwise convergence topology, and that when R is countable then $(\text{Emb}(\mathfrak{R}; R), d_R^*)$ is a complete separable metric space.

Definition

On $\text{Emb}(\mathfrak{R}, \mathfrak{R})$ the metric $d_{\mathfrak{R}}$ is defined to agree with $d_{\mathfrak{R}}^*$.

Next we need to define $d_{\mathfrak{R}}$ -distances on $\text{Emb}(\mathcal{F}, \mathfrak{R})$ and between $\text{Emb}(\mathcal{F}, \mathfrak{R})$ and $\text{Emb}(\mathfrak{R}, \mathfrak{R})$.

Note: $\text{ran}(d_R^*) = \{\frac{1}{2^n} \mid n \in \omega \wedge n > 0\} \subseteq [0, \frac{1}{2}]$.

Immediate extension and the function $\delta : \mathcal{F} \cup \sqsubset \rightarrow (1, \frac{3}{2})$

Recall that \mathcal{F} is the set of all digraphs whose domains are non-0 finite ordinals, and that

$$\text{Emb}(\mathcal{F}, R) = \{(P, f) \mid P \in \mathcal{F} \text{ and } f \text{ embeds } P \text{ into } R\}.$$

Note: We use f to refer to $(P, f) \in \text{Emb}(\mathcal{F}, R)$, and $\text{dom}(f)$ refers to P .

Definition

The **immediate extension** relation \sqsubset in \mathcal{F} is defined as

$$\sqsubset = \{(P, Q) \in \mathcal{F}^2 \mid |Q| = |P| + 1 \wedge |P|^2 \cap Q = P\}.$$

The function δ

In order to define metrics on $\text{Emb}(\mathcal{F}; R)$ and E_R we fix an **injection** $\delta : \mathcal{F} \cup \sqsubset \rightarrow (1, \frac{3}{2})$ such that:

- ① If $x, y \in \text{ran}(\delta)$ and $x - y$ is a dyadic rational, then $x = y$.
- ② δ takes rational values, that is, $\text{ran}(\delta) \subseteq \mathbb{Q} \cap (1, \frac{3}{2})$.
- ③ δ is recursive (or at least $\delta \in L$).

The metric $\text{Emb}(\mathcal{F}, \mathfrak{R})$ and $\text{Emb}(\mathcal{F}, R)$

Definition

We define $d_R^{**} : \text{Emb}(\mathcal{F}; R)^2 \rightarrow \mathbb{R}_{\geq 0}$ to be the symmetric function such that

$$d_R^{**}(f, g) = \begin{cases} 0 & \text{if } f = g; \\ \delta(\text{dom}(f), \text{dom}(g)) & \text{if } \text{dom}(f) \sqsubset \text{dom}(g) \wedge f \subset g; \\ 1 & \text{otherwise.} \end{cases}$$

Proposition

- ① d_R^{**} is a metric, which induces the discrete topology on $\text{Emb}(\mathcal{F}; R)$.
- ② In particular, if R is a countable digraph, then $\text{Emb}(\mathcal{F}; R)$ is countable, and $(\text{Emb}(\mathcal{F}; R), d_R^{**})$ is separable and complete.

Definition

On $\text{Emb}(\mathcal{F}, \mathfrak{R})$, we define $d_{\mathfrak{R}}$ to agree with $d_{\mathfrak{R}}^{**}$.

Distances between points in $\text{Emb}(\mathfrak{R}, \mathfrak{R})$ and $\text{Emb}(\mathcal{F}, \mathfrak{R})$

For $(P, f) \in \text{Emb}(\mathcal{F}, R)$, let

$$C_{\text{ran}(f)} = \{F \in \text{Emb}(\mathfrak{R}, R) \mid \text{ran}(f) \subseteq \text{ran}(F)^\perp\}$$

This set is closed in the pointwise convergence topology (the complement is clearly open).

Definition

We define $d_R : E_R^2 \rightarrow [0, 2]$ to be the symmetric function extending d_R^{**} and d_R^* such that

$$d_R(f, F) = d_R(F, f) = d_R^*(F, C_{\text{ran}(f)}) + \delta(\text{dom}(f)),$$

where

$$d_R^*(F, C_{\text{ran}(f)}) = \inf\{d_R^*(F, G) \mid G \in C_{\text{ran}(f)}\}.$$

In particular, $d_{\mathfrak{R}}$ on $E_{\mathfrak{R}}$ is now defined.

Basic decoding with d_R

Proposition

(A) d_R is a complete metric on E_R , and if $F \in \text{Emb}(\mathfrak{R}, R)$ and $f \in \text{Emb}(\mathcal{F}, R)$ then

$$d_R(F, f) \geq 1.$$

(B) $d_R(x, y) = \delta(\text{dom}(f))$ if and only if one of the following hold:

- ① $x = f$, $y \in \text{Emb}(\mathfrak{R}; R)$, and $\text{ran}(f) \subseteq y^\perp$.
- ② $y = f$, $x \in \text{Emb}(\mathfrak{R}; R)$, and $\text{ran}(f) \subseteq x^\perp$.

(C) If R is countable, then E_R is a separable complete metric space.

Remark

(B) above shows that the distances between $F \in \text{Emb}(\mathfrak{R}, R)$ and $f \in \text{Emb}(\mathcal{F}, R)$ can detect if $\text{ran}(f) \subseteq \text{ran}(F)^\perp$. From this one can verify when $F_Q, F_S \in \text{Emb}(\mathfrak{R}, \mathfrak{R})$ code the countable digraphs Q and S , then

$$F_Q \simeq_{\alpha}^{\text{FFKN}} F_S \text{ implies that } Q \simeq_{\alpha}^{\text{Scott}} S.$$

A very few words about proving that

$$\text{rk}^{\text{FFKN}}(E_{\mathfrak{R}}, d_{\mathfrak{R}}) = \omega_1$$

The plan now

- Since the ordering of an ordinal makes the ordinal a digraph, we have that for each countable ordinal β there is

$$F_\beta \in \text{Emb}(\mathfrak{R}, \mathfrak{R})$$

which codes β (up to isomorphism).

- The plan is to prove that in the metric space $(E_{\mathfrak{R}}, d_{\mathfrak{R}})$ we have

$$\sup\{\text{rk}^{\text{FFKN}}(F_\beta) \mid \beta < \omega_1\} = \omega_1,$$

thereby proving that $\text{rk}^{\text{FFKN}}(E_{\mathfrak{R}}, d_{\mathfrak{R}}) = \omega_1$.

The challenge is that the FFKN-Scott analysis of F_β in the metric space $(E_{\mathfrak{R}}, d_{\mathfrak{R}})$ could pick up far more information about β than the classical Scott analysis does.

The schematic nature of Rado extensions

The key thing to notice is that while elements of $E_{\mathfrak{R}}$ can only code **countable** ordinals, we can describe schematically embeddings

$F_\beta : \mathfrak{R} \rightarrow R_\beta$ where

- R_β is a Rado digraph (uncountable when β is uncountable);
- $F_\beta : \mathfrak{R} \rightarrow R_\beta$ codes β ;
- $\beta \mapsto F_\beta$ and $\beta \mapsto R_\beta$ are class functions definable without parameters (indeed are in L).

Connection to Stern's absoluteness

Notice now that in a forcing extension where β becomes countable, R_β will become isomorphic to \mathfrak{R} , and so F_β will essentially become an element of $\text{Emb}(\mathfrak{R}, \mathfrak{R})$.

So we have described in L objects F_β that can be considered “virtual” elements of $\text{Emb}(\mathfrak{R}, \mathfrak{R})$, much in the same way as J. Stern in his classic paper ‘On Lusin’s restricted continuum problem’ described “virtual” Borel sets (that only become Borel sets after collapsing a cardinal).

Absoluteness to a a countable transitive model

Unfortunately, the equivalence relations $\simeq_{\alpha}^{\text{FFKN}}$ have high complexity in the projective hierarchy, so where Stern has the advantage that Borel sets have good absoluteness properties, we don't. But this can be sidestepped:

Lemma (For $\simeq_{\alpha}^{\text{FFKN}}$ on the space $(E_{\mathfrak{R}}, d_{\mathfrak{R}})$)

For any countable $\alpha^* < \omega_1$, there is a countable transitive model M (of a large fragment of ZFC) with $\alpha^* \in M$, such that for all $\alpha, \beta, \gamma \in \text{ON} \cap M$:

- ① $F_{\beta}, F_{\gamma} \in M$ and $R_{\beta}, R_{\gamma} \in M$.
- ② $(F_{\beta} \simeq_{\alpha}^{\text{FFKN}} F_{\gamma})^M \iff F_{\beta} \simeq_{\alpha}^{\text{FFKN}} F_{\gamma}$

Using this lemma, we'll sketch the proof that $\text{rk}^{\text{FFKN}}(E_{\mathfrak{R}}, d_{\mathfrak{R}}) = \omega_1$ on the next slide.

A cardinality argument

We repeat the Lemma:

Lemma (For $\simeq_{\alpha}^{\text{FFKN}}$ on the space $(E_{\mathfrak{R}}, d_{\mathfrak{R}})$)

For any countable $\alpha^* < \omega_1$, there is a countable transitive model M (of a large fragment of ZFC) with $\alpha^* \in M$, such that for all $\beta, \gamma \in \text{ON} \cap M$:

- ① $F_{\beta}, F_{\gamma} \in M$ and $R_{\beta}, R_{\gamma} \in M$.
- ② $(F_{\beta} \simeq_{\alpha}^{\text{FFKN}} F_{\gamma})^M \iff F_{\beta} \simeq_{\alpha}^{\text{FFKN}} F_{\gamma}$

Proof that $(E_{\mathfrak{R}}, d_{\mathfrak{R}})$ has rank ω_1 : Suppose $\text{rk}^{\text{FFKN}}(E_{\mathfrak{R}}, d_{\mathfrak{R}}) = \alpha^* < \omega_1$.

Let M be as in the Lemma. A cardinality argument in M shows that there are $\beta, \gamma \in \text{ON} \cap M$ (so β, γ are countable) with $\beth_{\alpha^*}^M < \beta < \gamma$ such that

$$(F_{\beta} \simeq_{\alpha^*}^{\text{FFKN}} F_{\gamma})^M.$$

Then $F_{\beta} \simeq_{\alpha^*}^{\text{FFKN}} F_{\gamma}$, so $F_{\beta} \sim_{\text{isomet}} F_{\gamma}$ since $\alpha^* = \text{rk}^{\text{FFKN}}(E_{\mathfrak{R}}, d_{\mathfrak{R}})$. Now we obtain a contradiction as follows: $\beta \neq \gamma$, so for some $\xi \in \text{ON}$ we have $\beta \not\sim_{\xi}^{\text{Scott}} \gamma$, but by the Remark on slide 17 we then have $F_{\beta} \not\sim_{\xi}^{\text{FFKN}} F_{\gamma}$, contradicting that $F_{\beta} \sim_{\text{isomet}} F_{\gamma}$. □

Thanks for listening!